PROPOSTA DE MÀSTERS PRESENTATS A LA 3a CONVOCATÒRIA ERASMUS-MUNDUS COASTAL AND MARINE ENGINEERING AND MANAGEMENT

Acord núm. 168/2005 pel qual es ratifica la proposta de Master Coastal and Marine Engineering and Management

- Document aprovat per la Comissió de Docència del Consell de Govern del dia 21/06/2005
- Document aprovat pel Consell de Govern del dia 1/07/2005

DOCUMENT CG 17/06  2005

Vicerectorat d’Ordenació Acadèmica
Comissionat de l’Espai Europeu d’Educació Superior
Juny 2005
CoMEM Erasmus Mundus M.Sc.
Coastal and Marine Engineering and Management
Erasmus-Mundus MSc Course CoMEM - Coastal and Marine Engineering and Management

Table of content

Section 1: Identification
Section 2: Description of the Erasmus Mundus Masters Course
Section 3: Grant requested
Section 4: Declaration and checklist
Annex 1: Letters of endorsement of consortium partners
Annex 2: Financial identification
Annex 3: Reference documents of formal approval of degree
Appendix 1: List of courses per institute
Appendix 2: Syllabi of core and compulsory courses
Appendix 3: CV’s of core teaching staff
Appendix 4: Selection of relevant collaborations
Appendix 5: Orientation week Trondheim
ERASMUS MUNDUS PROGRAMME
Application Form for Action 1:
ERASMUS MUNDUS MASTERS COURSES

You are applying for:

☑ An Erasmus Mundus Masters Course without a preparatory year
☐ An Erasmus Mundus Masters Course including a preparatory year

CLOSING DATE FOR SUBMISSION:

31 MAY 2005
(as per postmark)
Before completing the form, please read the relevant sections in the *Erasmus Mundus Call for Proposals EAC/04/05* and the *Administrative and Financial Handbook for Erasmus Mundus Projects*. Further information can be found on the Erasmus Mundus website: [http://europa.eu.int/comm/education/programmes/mundus/index_en.html](http://europa.eu.int/comm/education/programmes/mundus/index_en.html).

Please note that even if you apply for an Erasmus Mundus Masters Course including a preparatory year, your application – if successful - would be selected for five years. You are therefore required to answer all questions under Section 2 of the application form.

Your proposal will be assessed on the basis of the elements included in this application only. You can include web site references in your application, but the assessment of your proposal will not be based on additional technical information found on a web site and not contained within the application.

Applicants should use as application language the operational language of communication between the institutions involved in the Masters Course.

The application must be typewritten or word-processed using a computer, character size 11 pt minimum.

The original of the application must bear the original signature of the legal representative of the co-ordinating institution and the original stamp of this institution.

The application must be accompanied by copies of letters from the appropriate authorities of each institution participating in the Masters Course, confirming their agreement with the application as submitted.

Applications must be sent by post and e-mail by the closing date. The paper copy is authentic. Applications sent by e-mail only or sent by fax will not be accepted. Annexes which are not available electronically need not be sent by e-mail.

The signed original of the application and 2 copies thereof must be sent in the same envelope by 31 May 2005 (as per postmark) to:

European Commission  
Directorate-General for Education and Culture  
Directorate B – Unit B/6  
Bureau: B -- 7 06/32  
B-1049 Brussels  
E-Mail: EAC-Erasmus-Mundus@cec.eu.int  
Fax: (+32) (2) 296.32.33

Because of the tight timing for the assessment of applications, you are requested to send your application by rapid mail so that it reaches the Commission no later than 7 June 2005.

A paper copy and an electronic copy of the original application must be sent by 31 May 2005 to the appropriate National Structure in each of the countries which are participating in the Masters Course. The list of National Structures appears in the *Erasmus Mundus Call for Proposals EAC/04/05* and on the website indicated above.

All applications will receive an acknowledgement slip.

Applications will be judged against the eligibility, selection and award criteria set out in the *Erasmus Mundus Call for Proposals EAC/04/05*.

Applicants will be notified about the outcome of the selection in writing in September 2005. A copy of the notification letter will be sent to the National Structures concerned.

In accordance with standard Commission practice, the information provided in your application may be used for the purposes of evaluating the Erasmus Mundus programme. The relevant data protection regulations will be respected.

Any questions relating to this proposal should be addressed to the address indicated above.
SECTION 1 - IDENTIFICATION

1. Title of the Masters Course
Please use a maximum of 12 words; start with an acronym or abbreviation, if applicable.

CoMEM Erasmus Mundus MSc- Coastal and Marine Engineering and Management

If your title is not in English, French or German, please provide a translation into any of the three languages.

2. Summary description of the Masters Course (maximum 500 words)
Please identify clearly the following aspects of your Masters Course:

- Objectives of the Masters Course, qualifications obtained, duration, language(s) of instruction, size of student population, professor / student ratio;
- Summary of study programme;
- List of higher education institutions involved in the Masters consortium¹, including locations and mobility arrangements;
- Precise degree awarded (by which institutions and recognised in which countries);
- Admission criteria.

If your application is successful, this summary will be used as the official description of the Masters Course. It will be part of your grant agreement and published on the internet. You are therefore kindly requested to formulate it very carefully and to provide this summary in English, French or German.

The focus of the 'Erasmus Mundus MSc - Coastal and Marine Engineering and Management,' is to educate the participants from a coastal and marine engineering foundation in the technical, managerial and financial skills that are required to address coastal and marine management challenges.

Objectives
To provide
- familiarity with key issues concerning sustainable, environmentally friendly, legally and economically acceptable solutions to problems in Coastal and Marine Engineering;
- understanding of the relevant ethical and integral issues;
- specific specialisation within the overall programme, including the dissertation;
- research skills for further study (e.g., doctorates, specialised topics required by industry and continuous professional development);
- a European perspective on Coastal and Marine Engineering and Management, by learning in two or three European countries;
- a coherent and integrated global perspective on coastal and marine issues and problems;
- significant employment opportunities that encompass the private and public sectors.

The Master's course is a two year 120 ECTS programme and the language of instruction is English. The consortium offers a unique curriculum combining coastal and marine courses in a combination not found in single EU member states. Professor / CoMEM student ratio is estimated at 1 : 2.

The consortium has a well established research and educational background including numerical simulations, physical...

¹ The consortium is the group of higher education institutions involved in the Masters Course.
model testing and field techniques. This expertise, together with access to extensive data sets and long standing links with private firms, public administrations and other research/education institutes will also be offered to the students.

Entry will normally require a bachelor's degree in Civil Engineering or a related discipline. Successful students will be awarded a multiple or double (for those students who only stay at two of the participating Universities) degree. This degree from the institutions where they have studied will become a joint Master's degree when the national legislations allow it. The degree will include a Diploma Supplement describing the itinerary and expertise achieved. The study plan comprises four semesters. Semesters 1 and 2 will be spent at Trondheim and Delft, respectively, establishing a common foundation. Semester 3 will allow specialisation in any of the five participating Universities, followed by semester 4 where the Master Thesis will be completed.

The two main specialization areas offered by the program are:

i) engineering and environment, and

ii) management and environment.

List of participating institutions

Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft, The Netherlands

Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Civil and Transport Engineering, Trondheim, Norway

Universitat Politècnica de Catalunya, Department of Hydraulic, Maritime and Environmental Engineering, Barcelona, Spain

University of Southampton, School of Civil Engineering and the Environment and the School of Ocean and Earth Science, Southampton, United Kingdom

City University, School of Engineering and Mathematical Sciences, London, United Kingdom

The partners in the proposed consortium have international reputations and worldwide connections. There have been past and ongoing research and teaching projects between partners and exchanges of academic staff and students at Master and PhD levels (e.g. the 6th FP - IP called Floodsite, where some of the partners are involved in joint research). There are also contacts and projects between partners and institutions from some of the areas targeted in the call (illustrated by the list of agreements from Trondheim with collaborating universities and institutions). The partners have also established an individual and in some cases bilateral links in international Master activities and exchanges (e.g. the International Master on ICZM for Latin America). The links include ERASMUS - SOCRATES students exchanges.
3. Languages

Language in which you would like the grant agreement to be issued and correspondence with the Commission to be conducted. To facilitate co-operation with your partners, you are advised to enter the language most commonly used for communication within the consortium.

1st preference

☐ German ☑ English ☐ French

2nd preference

☐ German ☑ English ☐ French

4. Financial support from the European Community

Please note that according to the new financial regulation applicable to the general budget of the European Communities, one project may not receive more than one grant from the budget of the European Communities. In other words, if you are to be selected to receive an Erasmus Mundus grant for a given Masters Course, you must not receive a grant from another Community programme for the same Masters Course and funding period.

Is this Masters Course, or any aspect thereof or any larger project to which it may belong, currently being supported under another European Community programme?

☑ No

☐ Yes. Please specify the programme(s), date(s), type(s) of activity and, if possible, agreement number(s):

Is this Masters Course, or any aspect thereof or any larger project to which it may belong, currently the subject of any other application for support from the European Community?

☑ No

☐ Yes. Please specify the programme(s) and provide the amount(s) requested:

5. Previous applications for Erasmus Mundus Masters Courses

Please provide the following information for statistical purposes.

Are you resubmitting an application which has not been selected under previous Erasmus Mundus calls for proposals?

☑ No

☐ Yes. It was submitted under the first call for proposals (deadline 31 May 2004). Its reference number was: A1&2-2004

☐ Yes. It was submitted under the second call for proposals (deadline 31 October 2004). Its reference number was: A1-2005

If yes, has the composition of the consortium changed? ☐ Yes ☑ No. Possible comments:
6. Co-ordinating institution of the Masters consortium

The co-ordinating institution is also the applicant institution. To fill in this part, please use country codes and region codes indicated in Annex 1.

### 6.1 Legal Representative

This is the person legally authorised to sign the application and the grant agreement on behalf of the co-ordinating institution.

<table>
<thead>
<tr>
<th>Full legal name of the institution in the national language</th>
<th>Technische Universiteit Delft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym of the institution, if applicable</td>
<td></td>
</tr>
<tr>
<td>Full name of the institution in English (formal or informal translation)</td>
<td>Delft University of Technology</td>
</tr>
<tr>
<td>Country code</td>
<td>NL</td>
</tr>
<tr>
<td>Region code</td>
<td>NL33</td>
</tr>
<tr>
<td>Type of institution</td>
<td>University</td>
</tr>
<tr>
<td>Website</td>
<td><a href="http://www.tudelft.nl">http://www.tudelft.nl</a></td>
</tr>
<tr>
<td>Legal representative of the institution:</td>
<td></td>
</tr>
<tr>
<td>Family name</td>
<td>Krul</td>
</tr>
<tr>
<td>First name</td>
<td>Johan</td>
</tr>
<tr>
<td>Title (e.g. Prof., Dr., etc.)</td>
<td>Mr.</td>
</tr>
<tr>
<td>Department / Unit</td>
<td>Administrative &amp; Legal Affairs</td>
</tr>
<tr>
<td>Official function within the institution</td>
<td>Director of Corporate &amp; Legal Affairs</td>
</tr>
<tr>
<td>Legal address of the institution:</td>
<td>Julianalaan 134</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>2628 BL Delft</td>
</tr>
<tr>
<td>Country</td>
<td>the Netherlands</td>
</tr>
<tr>
<td>Phone (including country and area code)</td>
<td>+31 / 15 / 2783454</td>
</tr>
<tr>
<td>Fax (including country and area code)</td>
<td>+31 / 15 / 2783110</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:t.twickler@tudelft.nl">t.twickler@tudelft.nl</a></td>
</tr>
</tbody>
</table>

6.2 Co-ordinator

This is the manager of the Masters Course. All correspondence relating to the Masters Course will be addressed to this person.

<table>
<thead>
<tr>
<th>Family name</th>
<th>Stive</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
<td>Marcel</td>
</tr>
<tr>
<td>Institution (only if different from point 6.1 above) / Department</td>
<td>Department of Hydraulic Engineering</td>
</tr>
<tr>
<td>Official function within the institution</td>
<td>Professor in Coastal Engineering</td>
</tr>
<tr>
<td>Correspondence address (only if different from point 6.1 above):</td>
<td>Stevinweg 1</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>2628 CN Delft</td>
</tr>
<tr>
<td>Country</td>
<td>the Netherlands</td>
</tr>
<tr>
<td>Phone (including country and area code)</td>
<td>+31 / 15 / 2783348</td>
</tr>
<tr>
<td>Fax (including country and area code)</td>
<td>+31 / 15 / 2785124</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:m.j.f.stive@citg.tudelft.nl">m.j.f.stive@citg.tudelft.nl</a></td>
</tr>
</tbody>
</table>
6.3 Person in charge of finance

<table>
<thead>
<tr>
<th>Family name</th>
<th>Jager</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
<td>Jelle</td>
</tr>
</tbody>
</table>

| Title (e.g. Prof., Dr., etc.) | ir. |

| Department / Unit | Faculty of Civil Engineering and Geosciences |

| Official function within the institution | Head Finance |

| Sex | F (female) 🅱️ M (male) |

| Correspondence address (only if different from point 6.1 above): |
| Stevinweg 1 |
| 2628 CN Delft |
| the Netherlands |

| Phone (including country and area code) | +31 / 15 / 2783316 |

| Fax (including country and area code) | +31 / 15 / 2787092 |

| E-mail | b.t.dehaas@citg.tudelft.nl |

6.4 Financial identification

Please complete and sign the form in Annex 2 and attach it to your application.
7. Partner institutions of the Masters consortium

- To fill in this part, please use the country codes and region codes indicated in Annex 1.
- The minimum number of partners required is two.
- Add numbers and copies of this page, if necessary.

### Partner institution No 1

<table>
<thead>
<tr>
<th>Full legal name of the institution in the national language</th>
<th>Norges Teknisk-Naturvitenskapelige Universitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym of the institution, if applicable</td>
<td>NTNU</td>
</tr>
<tr>
<td>Erasmus University Charter N°</td>
<td>29704-IC-1-2002-1-NO</td>
</tr>
<tr>
<td>Full name of the institution in English (formal or informal translation)</td>
<td>Norwegian University of Science and Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of institution</th>
<th>University</th>
<th>Country code</th>
<th>NO</th>
<th>Region code</th>
<th>NO06</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Department / Unit</th>
<th>Department of Civil and Transport Engineering</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact person</th>
<th>Family Name: Bratteland Function: Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>Eivind Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>Høgskoleringen 7a, Gløshaugen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street &amp; Street Number</td>
<td>NO 7491, Trondheim</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>Norway</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone (including country and area code)</th>
<th>+ 47 / 73594626</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax (including country and area code)</td>
<td>+ 47 / 73597021</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:Eivind.bratteland@ntnu.no">Eivind.bratteland@ntnu.no</a></td>
</tr>
<tr>
<td>Website</td>
<td><a href="http://www.ntnu.no">http://www.ntnu.no</a></td>
</tr>
</tbody>
</table>

| Is the institution able to recover VAT? | No |

### Partner institution No 2

<table>
<thead>
<tr>
<th>Full legal name of the institution in the national language</th>
<th>Universitat Politecnica de Catalunya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym of the institution, if applicable</td>
<td>UPC</td>
</tr>
<tr>
<td>Erasmus University Charter N°</td>
<td>28604</td>
</tr>
<tr>
<td>Full name of the institution in English (formal or informal translation)</td>
<td>Technical University of Catalonia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of institution</th>
<th>University</th>
<th>Country code</th>
<th>ES</th>
<th>Region code</th>
<th>ES51</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Department / Unit</th>
<th>Department Hydraulic, Maritime and Environmental Engineering</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact person</th>
<th>Family Name: Sanchez-Arcilla Function: Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>Agustin Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>Jordi Girona, 1-3, Campus Nord, Edif. D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street &amp; Street Number</td>
<td>08034 Barcelona</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>Spain</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone (including country and area code)</th>
<th>+ 34 / 93 / 4016468</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax (including country and area code)</td>
<td>+ 34 / 93 / 4011861</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:agustin.arcilla@upc.edu">agustin.arcilla@upc.edu</a></td>
</tr>
<tr>
<td>Website</td>
<td><a href="http://www.upc.edu/lim">http://www.upc.edu/lim</a></td>
</tr>
</tbody>
</table>

| Is the institution able to recover VAT? | No |
### Partner institution No 3

<table>
<thead>
<tr>
<th>Full legal name of the institution in the national language</th>
<th>City University London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym of the institution, if applicable</td>
<td>Erasmus University Charter N° 27924-ic-1-2002-1-UK</td>
</tr>
<tr>
<td>Full name of the institution in English (formal or informal translation)</td>
<td></td>
</tr>
<tr>
<td>Type of institution</td>
<td>University</td>
</tr>
<tr>
<td>Country code</td>
<td>UK</td>
</tr>
<tr>
<td>Region code</td>
<td>UK11</td>
</tr>
<tr>
<td>Department / Unit</td>
<td>School of Engineering and Mathematical Sciences</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Family Name: Boswell</td>
<td></td>
</tr>
<tr>
<td>First Name: Laurie</td>
<td></td>
</tr>
<tr>
<td>Male X Female [ ]</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Street &amp; Street Number</td>
<td>Northampton Square</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>London EC1V OHB</td>
</tr>
<tr>
<td>Country</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Phone (including country and area code)</td>
<td>+ 44 / 20 / 7040118</td>
</tr>
<tr>
<td>Fax (including country and area code)</td>
<td>+ 44 / 20 / 7040119</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:L.F.Boswell@city.ac.uk">L.F.Boswell@city.ac.uk</a></td>
</tr>
<tr>
<td>Website</td>
<td>http:// <a href="http://www.city.ac.uk/engineering">www.city.ac.uk/engineering</a></td>
</tr>
<tr>
<td>Is the institution able to recover VAT?</td>
<td>No</td>
</tr>
</tbody>
</table>

### Partner institution No 4

<table>
<thead>
<tr>
<th>Full legal name of the institution in the national language</th>
<th>University of Southampton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym of the institution, if applicable</td>
<td>Erasmus University Charter N° 210380-IC-1-2002-1 UK</td>
</tr>
<tr>
<td>Full name of the institution in English (formal or informal translation)</td>
<td></td>
</tr>
<tr>
<td>Type of institution</td>
<td>University</td>
</tr>
<tr>
<td>Country code</td>
<td>UK</td>
</tr>
<tr>
<td>Region code</td>
<td>UKJ3</td>
</tr>
<tr>
<td>Department / Unit</td>
<td>School of Civil Engineering and the Environment and the School of Ocean and Earth Science</td>
</tr>
<tr>
<td>Contact person</td>
<td>Family Name: Nicholls</td>
</tr>
<tr>
<td>First Name: Robert</td>
<td>Male X Female [ ]</td>
</tr>
<tr>
<td>Address:</td>
<td>Highfield</td>
</tr>
<tr>
<td>Street &amp; Street Number</td>
<td>Southhampton</td>
</tr>
<tr>
<td>Post Code &amp; Town</td>
<td>S017 1BJ United Kingdom</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Phone (including country and area code)</td>
<td>+ 44 / 23 / 80594139</td>
</tr>
<tr>
<td>Fax (including country and area code)</td>
<td>+ 44 / 23 / 80677519</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:r.j.nicholls@soton.ac.uk">r.j.nicholls@soton.ac.uk</a></td>
</tr>
<tr>
<td>Website</td>
<td>http:// <a href="http://www.civil.soton.ac.uk">www.civil.soton.ac.uk</a></td>
</tr>
<tr>
<td>Is the institution able to recover VAT?</td>
<td>No</td>
</tr>
</tbody>
</table>
SECTION 2 - DESCRIPTION OF THE ERASMUS MUNDUS MASTERS COURSE

- Please describe the following aspects of your Masters Course, using the same order and numbering as given in the list of questions.
- You are invited to read the relevant chapters of the Erasmus Mundus Call for Proposals EAC/04/05 carefully, before filling in this section.
- Please enclose supporting documents only where these have a direct and material bearing on your application.
- Please respect the maximum length of text indicated, excluding supporting documents.

1. GENERAL INFORMATION ON THE MASTERS COURSE

1.1 General discipline
- [ ] Agricultural sciences
- [ ] Architecture, urban and regional planning
- [ ] Art and design
- [ ] Business studies, management sciences
- [ ] Communication and information sciences
- [ ] Education, teacher training
- [x] Engineering, technology
- [ ] Geography, geology
- [ ] Humanities
- [ ] Languages and philological sciences
- [ ] Law
- [ ] Mathematics, informatics
- [ ] Medical sciences
- [ ] Natural sciences
- [ ] Social sciences
- [ ] Other:

Specific discipline (if further specification is useful): Civil Engineering

1.2 Duration and ECTS credits

The full-degree programme covers:
- [ ] one year (60 ECTS credits)²
- [ ] one year and ___ months ( ___ ECTS credits)
- [x] two years (120 ECTS credits)²

1.3 Student population and number of staff involved in the Masters Course: 30 to 50 CoMEM students and 20 staff

1.4 Final degree delivered
- [ ] joint
- [ ] double
- [x] multiple

² If your Masters Course carries more than the standard credits, please indicate how many and provide further details under point 2.2.
2. DETAILED DESCRIPTION OF THE MASTERS COURSE (max. 15 pages excluding annexes e.g. CVs, etc.)

Study programme and recognition

2.1 Describe the objectives of the Masters Course. Describe how the Masters Course contributes towards university excellence and European competitiveness.

Introduction

Managing coastal and marine areas is a major challenge reflecting growing and competing human demands, as well as new threats such as accelerated sea-level rise and climate change. However, successful management is an essential element of sustainable development. Rising to this challenge, Europe is embarking on a systematic approach to Coastal and Marine Management, which is supported by EU and national legislation and policies. The integrated approaches for habitat protection, water quality and pollution control are examples. There are initiatives to establish a marine strategy within Europe to improve European competitiveness. In this respect, transport economics, construction, environment, economic development and employment are some important subjects. Significant technical, financial and management issues are central to the establishment of a thriving coastal and marine economy in harmony with the environment. Although the European perspective is important, these problems are global and this broader perspective also needs to be addressed.

The Erasmus Mundus MSc that is proposed by the consortium is designed to train coastal engineers within a broad curriculum that will allow them to contribute to improving coastal and marine management. The MSc will provide a broad European education that is valid across the world. This includes the essential elements in Coastal and Marine Engineering and Management, which represent the geographical diversity of north to south coastal and marine systems, taught within a sustainability framework that stresses ethical and long-term issues and responsibilities. The five universities comprising the consortium have long-lasting relationships both on a personal basis (teaching staff involved) and on an institutional basis (in terms of research and education).

The proposed educational program combines the teaching background of participating institutions, which is based on the advanced research there performed. It also includes an integral educational component founded on enhanced ethical development and multifaceted social capabilities.

Core Objectives

1. To enable students to acquire a fundamental knowledge on the most advanced tools and techniques available for Coastal and Marine Engineering and Management;
2. To familiarise students with the key issues that provide sustainable, environmentally friendly, legally and economically acceptable solutions to problems in Coastal and Marine Engineering and Management;
3. To develop specialisms in specific fields offered within the overall programme by a member of the consortium;
4. To develop the student’s research skills to allow them to prepare for further study (e.g., doctorates, specialised consultancy research), and encourage them to develop as independent lifelong learners within a rapidly evolving field (e.g., enthusiastic participants in continuous professional development);
5. To provide students with a comprehensive EU perspective on Coastal and Marine Engineering and Management, by learning and living in two or three contrasting European countries (different physical, economic and social settings);
6. To use the European context to develop a coherent and integrated approach applicable to a more global perspective on coastal and marine problems and their solution;
7. To prepare students for employment for a wide range of career opportunities across the coastal and marine fields that encompass the public and private sectors;
8. To develop the ethical and integral dimensions of the student’s education to ensure that they understand their social, ethical and professional responsibilities.

Additional objectives

1. To contribute to increasing the diversity within higher education, by continuing to recruit high quality entrants irrespective of national, social or cultural background (as required for a truly integrated approach to understand and manage coastal and marine systems);
2. To understand the general objectives of the United Nations, the IMO and other international and national agencies who determine the coastal and marine policy and legal frameworks.
All partners of the consortium are universities offering top quality higher education in Engineering and Management. They also feature a strong environmental approach with emphasis on the ethical dimension and issue of sustainability. The consortium has taken the best from each partner to offer a distinctive Erasmus Mundus MSc in Coastal and Marine Engineering and Management. The high academic profile of the Master’s programme with a variety of integrated courses, which reflect the strength of each partner, provides a distinctiveness that makes the programme unique within Europe and the rest of the world. The opportunity to study in two, three or four (according to the five main itineraries established in the Master Program) different European countries will make this course distinctive and particularly attractive to students from outside Europe. The programme has been designed to address contemporary numerical, laboratory and field techniques for the coastal system. This will also include the unique laboratories available within the consortium or closely associated to its partners. As a result it is expected that the Erasmus Mundus MSc will support the competitiveness of Europe as an educational medium in the coastal and marine fields.

2.2 Describe the structure and the content of the study programme in detail indicating the value of each part of the programme in ECTS credits. Describe the role of each institution within the consortium in course delivery indicating which institution delivers which part of the programme.

Introduction

The consortium has designed a two-year MSc study program using strengths of existing MSc education programmes at five universities along a European North-South axis and East-West axis. The diversity and the complementarities of these existing programmes will ensure that different subject paths can be followed. The individual universities alone cannot offer these paths. This is a unique feature and establishes the relevance of the Erasmus Mundus MSc on EU and global levels.

The involved universities and the responsible departments are:

- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft, The Netherlands
- Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Civil and Transport Engineering, Trondheim, Norway
- Universitat Politècnica de Catalunya, Department of Hydraulic, Maritime and Environmental Engineering, Barcelona, Spain
- University of Southampton, School of Civil Engineering and the Environment, and School of Ocean and Earth Science, Southampton, United Kingdom
- City University, School of Engineering and Mathematical Sciences, London, United Kingdom

Detailed outline of education:

Concerning educational content the consortium offers a strong coastal focus with either engineering/environment or management/environment emphasis (see Scheme 1). While the first year (two semesters of each 30 ECTS course and project work) is general to all students, five main routes are offered in the second year, comprising a finalizing year at one of the five universities. However, an alternative route in the last semester of the finalizing year can be chosen, but this is exception rather than rule.

Hence, the study plan comprises four semesters. Semesters 1 and 2 will be spent at Trondheim and Delft, respectively, establishing a common foundation. As semester 1 ends in December and semester 2 starts end of January, this time slot will be used to move to Delft and organize the “winterschool” (a social and informative event) with participation of all core teaching staff of the consortium. Semester 3 will allow specialisation in any of the five participating Universities, followed by semester 4 where the Master Thesis will be completed.

One practical rationale behind the above scheme is that:

- Trondheim and Delft have a Bologna scheme of 2-year international MSc into place;
- Barcelona, Southampton and City (London) have a 1-year MSc into place, offering a programme, which is very equivalent to the second year of the 2-year MSc.
Course contents

A detailed outline of the program is given in Appendices 1 and 2. A global (non-exhaustive) outline is as follows:

Semester 1
Country and place: Norway, Trondheim
University: Norwegian University of Science and Technology
Start date: mid august
End date: Christmas
Programme: compulsory and optional courses (ECTS: 30)
Topics: Compulsory: Marine physical environment, Geotechnical engineering - calculation methods, and Spreading of pollution
Optional: Dynamic response to irregular loadings and Transport systems

Winter-school between semester 1 and 2:
Country and place: Netherlands, Delft
University: all consortium partners
Date: third week of January
Program: information and social programme (ECTS: 0)
Topics: discussions and information about the educational programme, field and laboratory visits

Semester 2
Country and place: Netherlands, Delft
University: Delft University of Technology
Start date: mid january
End date: end of June
Program: project and compulsory and optional courses (ECTS: 30)
Topics: Compulsory: multidisciplinary project, philosophy and ethics, probabilistic design, bed, bank and shore protection
Optional: ports and waterways, computational modelling, structural dynamics, offshore soil mechanics and geology
Semester 3 - Barcelona
University: Technical University of Catalunya
Start date: September
End date: January
Program: compulsory and optional courses and minor thesis (ECTS: 30)
Topics: Compulsory: marine climate, coastal protection, numerical and hydraulic modelling
Optional: coastal morphodynamics, impacts, conflicts and risks, minor theses

Semester 3 – Trondheim
University: Norwegian University of Science and Technology
Start date: Mid-August
End date: Christmas
Programme: A compulsory specialization project (minor thesis) and normally three selected specialization subjects.
In addition one non-technical subject of 7.5 ECTS must be chosen (totalling ECTS: 30).
Topics: The alternative specialization areas are: Coastal engineering, port engineering, marine civil engineering, arctic offshore engineering and marine geotechnics.

Semester 3 - Delft
University: Delft University of Technology
Start date: September
End date: January
Program: compulsory and optional courses (ECTS: 30)
Topics: Compulsory: coastal morphology, tidal inlets and basins, wind waves, ICZM
Optional: turbulence, flood defences, computational hydraulics, foundation engineering

Semester 3 – Southampton
University: University of Southampton
Start date: October
End date: January
Programme: A compulsory set of four modules covering coastal engineering and the environment (ECTS: 30).
Topics: Coastal and Maritime Engineering, Geographic Information Systems, Environmental Audit and Risk Assessment, and Applied Sediment Dynamics

Semester 3 - London
University: City University
Start date: October
End date: January
Programme: A choice of four modules to be selected from a set of five (ECTS: 30).
Topics: The topics covered by the modules include Management, Economics and Finance, Law and Insurance and Business.

Specific educational contexts

Delft

The proposed programme will be integrated in the existing international master programme at Delft University of Technology in Civil Engineering, specialisation Hydraulic Engineering. This course started in the academic year 2003-2004, and is fully integrated with international and Dutch students. The selected courses include course offers from our Department of Hydraulic Engineering, from other parts of the study programme in Civil Engineering as well as from other study programmes and faculties, including IHE-UNESCO. Our department has a hydraulic laboratory with state-of-the-art equipment (e.g. second-order wave generation and active reflection compensation) and instrumentation (e.g. PIV). The facilities are used both by MSc and PhD students. Our department develops the international standard nearshore wave propagation model SWAN. Through cooperation with the research institute Delft Hydraulics, we have access to and can make use of advanced hydraulic and morphodynamic software. We have also very good relationship and cooperation with governmental organisations such as Rijkswaterstaat, consultants such as DHV and Royal Haskoning, and industry, such as Van Oord and BosKalis, with foreign universities through exchange of students and research cooperation etc. Two professors working part-time with us are coming from respectively a larger, specialised engineering company and from Delft Hydraulics.
Trondheim

The Erasmus MUNDUS programme will be integrated in the existing international master programme at NTNU in Coastal and Marine Civil Engineering. This course started in 2003, and is fully integrated with international and Norwegian students. Courses here include course offers from our Division of Marine Civil Engineering, from other parts of the study programme in Civil and Environmental Engineering as well as from other study programmes and faculties. In addition to the basic parts given in this proposal for semester 1, one of our main specialisation is directed towards arctic offshore engineering, preparing graduates for the extensive coming activities in the northern-most areas as the Barents Sea. Through cooperation with the research organisation SINTEF, we have access to, and can make use of extensive laboratory facilities related to testing of various port and coastal conditions. We have also very good relationship and cooperation with industry, through an Industrial Network, with individual companies as STATOIL, with foreign universities through exchange of students and research cooperation etc. Two adjunct professors working part-time with us are coming from respectively a larger, specialised engineering company and from STATOIL.

Barcelona

The proposed ERASMUS Mundus programme will be coherently integrated into the 2 "Coastal/marine" masters, which now exist at UPC. The Harbour Engineering and Management Master was officially approved in 1997 and has been running since then with students from throughout Spain and Latin America. The International Master on Integrated Coastal/Estuarine Engineering and Management was officially approved in 2002 and has been running since then with students from various countries, particularly South and Central America. The selected courses are in the hands of professors from UPC with some extra classes by experts from other research institutions in Spain. The UPC professors belong to the Hydraulic, Maritime and Environmental Engineering Department. It is a Department with worldwide contacts in its field and with recognized numerical, experimental and lab expertise. The operational wave, current and sewage discharge forecasting for the Catalan coast is in the hands of the Department. The hydraulic wave flume (third in the EU) is also part of the experimental facilities, which also include various other flumes and basins. The Department is responsible as well for managing the observational network XIOM collecting wave and meteo data on-line along the Catalan coast.

The Department is also responsible for a PhD program in Marine Sciences where all the Catalan research centres dealing with the sea participate. This programme includes physical, chemical, geological, biological, engineering and "integrated" itineraries. It is one of the most recognized PhD programs in Spain in this field, with long standing links with many other Spanish research and administration groups. The group has also a well-defined background in international postgraduate courses, mainly with Latin America and other EU Universities. The co-operation with institutions from the southern Mediterranean coast is also starting to develop.

Southampton

The Erasmus MUNDUS programme will be integrated with the existing master programme in Environmental Coastal Engineering (to be replaced with Integrated Coastal Engineering). This course started in 1998, and is unique in the UK in being jointly offered by the School of Civil Engineering and the Environment and the School of Ocean and Earth Science, which is located within the National Oceanographic Centre (NOC). Hence, there is an emphasis on coastal oceanography in addition to coastal engineering, and a strong environmental focus, which reflects the interests of both Schools. A range of British, EU and international students take it. Dissertations are based in coastal industry or government sponsors and this has lead to very high employment rates for graduates. Coastal research and education is being brought together within the new university-wide Centre for Coastal Processes, Engineering and Management, strengthening the environment within which the Erasmus Mundus programme will be offered. Close links to the Channel Coastal Observatory (who monitor changes on the south coast of England and are located in NOC) provides extensive real world and practical input to the programme.

City University

The proposed programme will be integrated into the existing Master's degree in Marine Operations and Management, which is available at City University. This is a unique international programme, which has been developed in cooperation with industry and commerce, to fulfil the requirements of the many sectors of, and occupations in coastal and marine engineering and management. The course offers prospective students the opportunity for professional development relating to technical, financial and management issues and those of a more economic and strategic nature. It is generally recognised that London is the global centre for the organisation and management of marine activities and the existing Master’s programme benefits from the input of external specialist who are involved in the delivery of the course. The modules that are being offered to the Erasmus Mundus MSc are compatible with and will enhance the technical nature of the courses being proposed by other members of the consortium.
2.3 Describe the acquired competencies and the learning outcomes of the Masters Course.

Knowledge and understanding

The students will build besides some general skills (ethics, philosophy, probabilistic approach, multidisciplinary work) primarily specific marine and coastal engineering skills in their first common year, and then will be able to specialise and further develop those skills in the broad areas of technical-environment education, or management-environment education, which each partner offering specific pathways.

Delft: environmental fluid mechanics, coastal, estuarine, port and oceanographic engineering with a meso-tidal and medium to high-wave energy emphasis, integrated coastal zone management

Trondheim: marine physical environment, coastal, port and marine engineering with a tidal and high-wave energy emphasis (applied to rocky coast conditions), marine geotechnics, arctic offshore engineering

Barcelona: coastal engineering and oceanography with a Mediterranean "emphasis" (micro tidal conditions, torrential climatic conditions, intense tourist development)

Southampton: environmental coastal engineering, including coastal oceanography with an emphasis on new approaches to shoreline (flood and erosion) management, including beaches, cliffs, and estuaries

City, London: maritime environmental management, maritime operations, maritime law and insurance, maritime technology, finance, accounting and economics.

Intellectual skills

Upon completion of the programme a student will be able to:

a) Innovate, model and analyse complex coastal and marine engineering systems, processes and products using scientific principles and recognise the limitations and ethical aspects of such analysis;

b) Demonstrate innovation in the design of new marine systems or coastal processes;

c) Understand the capabilities of computer based and experimental methods for problem solving and be able to assess the limitations of particular cases;

d) Integrate knowledge of mathematics, science, information technology, design, business context and engineering practice to solve a wide range of problems in the subject applying understanding to novel and challenging solutions;

e) Evaluate technical and financial risks, through an understanding of the basis of such risks;

f) Have an extensive knowledge and understanding of management and business practices and their limitations.

Discipline-specific skills

Upon completion of the scheme a student will be able to:

a) Use appropriate mathematical and computational techniques (supplemented by hydraulic models if required) for simulating and analysing coastal and marine specific problems;

b) Design sustainable coastal or marine systems, components or processes, with technical analysis and critical evaluation of results;

c) Use learning resources effectively for independent research;

d) Conduct independent analysis of the economic, technical and managerial factors influencing the decision making process surrounding a coastal or marine problem;

Transferable skills

Upon completion of the scheme a student will be able to:

a) Communicate confidently and effectively in oral and written forms with the aid of standard information technology systems;

b) Manage their time and resources;

c) Work effectively as an individual or as a member or leader of a group;

d) Employ a systematic approach to gathering, analysing and communicating knowledge;

e) Undertake lifelong learning, particularly for continuing professional development

f) Generate new ideas and develop and evaluate a range of new solutions

g) Acquire a EU dimension in approach, scope and education (including additional linguistic capabilities).
2.4 List the partner institutions awarding the final degree and describe the title and the type of the final degree awarded by filling in the table below. Add further rows to the table, if necessary. Describe the role of each partner institution in the degree-awarding arrangements. Indicate if all successful students (European and third-country) receive the same final degree.

The type of degree awarded follows national rules. The Consortium aims at joint degrees, but this is at present not possible in all countries represented by the Consortium. A double or multiple degree is applicable at all Consortium partner institutions and will be issued by the first, the second and the last institution where students study if it is not possible to offer a joint degree at the time of graduation.

### Name of institution | Title of degree awarded for this Masters Course by this institution | Type of degree awarded | Date and reference of formal approval of degree
---|---|---|---
Delft University of Technology | Master of Science Civil Engineering | double X multiple □ joint | Approved: 1 September 2002
Norwegian University of Technology and Science | Master of Science in Civil and Environmental Engineering | double X multiple □ joint | Approved: 2005
Universitat Politècnica de Catalunya | Master Port Engineering and management and International Master Coastal and Marine Management | double X multiple □ joint | Approved: 1997, 2002 resp
University of Southampton | Master of Science Environmental Coastal Engineering | double X multiple □ joint | Approved: February 2001
City University | Master of Science Marine Operations and Management | double X multiple □ joint | Approved: March 2003

2.5 Describe the policy and the legal procedures within the Masters consortium for the recognition of programme components and the programme as a whole. Provide details of legal approval procedures for those partner institutions, which deliver the joint, double, or multiple degrees. Provide proof that the degree is officially recognised by the countries concerned.³

All components of the course have been accredited according to the rules in the particular country. The Examination and Selection Board of CoMEM (in short CoMEM-Board) approves the components and is also responsible for the rules and regulations of the exams and application of those. The CoMEM-Board consists of the responsible co-ordinating professors and meets at least twice a year to follow up on the procedures and rules related to the integrated Master program. The academic procedures as examination rules at each institution are followed. Because all modules are mutually recognized by the consortium partners and based on one common design, all partners certify the course as a whole. This implies that double or multiple degrees can be awarded. Copies of official statements are added to the proposals in Annex 3. The application is subject to changes under the present National Laws and Regulations regarding Higher Education.

2.6 Indicate if the Masters consortium uses the Diploma Supplement.

Diplomas will be accompanied by a common CoMEM diploma supplement. Besides the usual information on the holder of the qualification, etc. this supplement includes the following information:

- Description of the course as a whole;

³ You are advised to check with your Erasmus Mundus National Structure whether they can provide a model for the proof you have to submit in your national context.
• Final competences of the course;
• Modules taken with the number of credits and the grading according to the ECTS.

2.7 Indicate if the Masters Course has been newly created or if it has already existed.

The Masters Course is composed of modules (courses, project and thesis work) derived from existing programs in place with the consortium partners.

Teaching staff

2.8 Describe the professional and academic experience of the teaching staff who will deliver the core parts of the study programme. Enclose summary CVs of a maximum of 2 pages for each of the persons concerned in an annex.  

All responsible professors are fulltime professors with multi-year experience. They have support of colleague professors, associate and assistant professors. A selection of the core staff's cv's is given in Appendix 3.

Delft University of Technology, Delft:
Course director: Professor Marcel Stive
Local co-ordinator: Associate professor Paul Visser
Key academic personnel: 3 full time professors, 1 parttime professor, 4 associate professors

Norwegian University of Science and Technology, Trondheim:
Local co-ordinator: Professor Eivind Bratteland
Key academic personnel: 4 full time professors, 1 associate professor, 2 adjunct professors

Technical University of Catalunya, Barcelona
Local co-ordinator: Professor Agustin Sanchez-Arcilla
Key academic personnel: 3 full time professors, 2 associate professors, 2 adjunct professors

University of Southampton, Southampton
Local co-ordinator: Professor Robert Nicholls
Key academic personnel: Professor Carl Amos, Professor John Chaplin, Professor Trevor Tanton, Professor Michael Collins, Professor Andrew Bradbury, Dr Gerald Mueller, GIS Lecturer

City University, London
Local co-ordinator: Professor Laurie Boswell
Key academic personnel: Professor C. Arcoumanis, Dr N. Sinclair Brown, Captain S. Culshaw, Professor J. Carlton

2.9 Describe the availability and presence of teaching staff for enrolled students.

Availability and presence of core staff is fulltime.

4 If you apply for an Erasmus Mundus Masters Course including a preparatory year, you may not be in a position to provide this information fully.
Admission, application, selection, examination criteria

2.10 Describe the common admission criteria, application procedure, selection process and examination criteria for students within the Masters consortium. Indicate all admission conditions for students, including any additional ECTS requirements or qualifications needed following the first degree.

2.10.1 Admission process

Admission is granted to graduated students with a Bachelor degree in Civil Engineering or equivalent degree. The students should have a thorough general knowledge about the fundamentals in Civil Engineering. The CoMEM-Board reviews the criteria at least annually.

The admission policy is intended to ensure equal opportunity of access to higher education for qualified European and third country students. In general students are assessed individually on the basis of their previous academic record and a letter of motivation.

The programme will strive for a balanced selection of students from different parts of the world. Also students from the "Asian windows" countries will be included. It is the aim to include a limited number of students with a few years of working experience. This is expected to give an added value to the programme.

Applicants are required to demonstrate their proficiency in English in case they do not originate from an English speaking country or a country where English can be considered to be the second language, by submitting the results of a recognized language proficiency test, such as the TOEFL (minimum score: 550 or 213 on a computer-based TOEFL test) or an equivalent test. CoMEM Board can waive such a test if other adequate documentation of proficiency in English is submitted.

A common fee of 8,000 Euro per year for third country students will be charged to cover the tuition fee and administrative costs for the universities which host the student and deliver the degree.

The tuition fee for EU-students is 4,000 Euro per year. Differences between this fee and the nationally legislated fees may be waived or subsidized.

2.10.2 Application procedure

The application deadline for non-EU students who wish to participate in this Erasmus Mundus master course is January 15. (Note: if application numbers are large a two-step procedure will be introduced with a pre-application as the first step). An application form for students should be completed and required documents attached: legalized copies of diplomas and transcripts in duplicate, a certificate attesting English proficiency and a letter of motivation.

Applicants must in the application process prioritise which specialisation they would like to study.

Applications have to be sent to:

Course Director Erasmus Mundus Coastal and Marine Engineering and Management Course  
Prof. M.J.F. Stive  
Delft University of Technology  
Faculty of Civil Engineering and Geosciences  
Section of Hydraulic Engineering  
Stevinweg 1  
2628 CN Delft  
The Netherlands  
Tel.: +31 15 278 5487  
Fax.: +31 15 278 5124  
E-mail: m.j.f.stive@citg.tudelft.nl

2.10.3 Selection process

The Office of the Course director checks all applications in terms of formal compliance with the admission requirements (TOEFL test, diploma's etc.).

The CoMEM-Board will carry out the selection process. The Board consists of five professors of the universities in this consortium. The course director is the chairperson of the Board. The Board meets in January to select the EU
and non-EU students who will participate in the course. Third country scholar applications are also reviewed by the Selection Board on basis of quality in research and teaching.

Selection criteria are:
− First degree (B.Sc. or equivalent) in civil engineering (or comparable field)
− Grades obtained
− English language skills
− Further quality of the candidate (CV, internships, extra curricular activities, working experience, etc.)
− Letter of motivation
− References

The decision who to select will be taken before the end of February. In case of disagreement or doubt, the decision whether to accept a student or not is taken by the chairman of the CoMEM-Board.

25 non-EU students are accepted and 25 students are put on a reserve list. Also 3 (first year) and 4 (later years) scholars are accepted and 3 resp. 4 are put on a reserve list.

The CoMEM registration office informs the applicants if they have been accepted for the Course and if they have been awarded a scholarship before the first of March. Upon acceptance the students register in the course database through the website.

2.11 Indicate if students have to pay tuition fees. If so, give the amount of the fee for third-country and European students. Indicate when and where the students have to pay these fees and how the fees are distributed between the members of the consortium.

The selected students will receive the Erasmus Mundus scholarship funds (total 21,000 Euro) from the CoMEM registration office of the co-ordinating university. The initial amount of 5,000 Euro is paid to the student immediately upon arrival of the student in Trondheim. This amount is earmarked for fees, travel expenses, relocation costs, etc. On request an advance, to cover the travelling costs to Europe, will be transferred in August to the students’ bank account in his/her home country. The 10 monthly instalments of 1,600 Euro will be paid by the co-ordinating university to the student in the beginning of each month. The students pay the tuition fee of 16,000 Euro and 8,000 Euro respectively in four instalments to the CoMEM consortium through the co-ordinating university within one month after the start of the semester.

**Mobility arrangements**

2.12 Describe the mechanisms of student and scholar mobility between the institutions of the Masters consortium. Indicate all mobility combinations, the duration of mobility periods and the number of ECTS credits acquired during mobility.

All students spend the first semester at NTNU (Trondheim) and the second semester at DUT (Delft). The third and fourth semester are spent at one of the CoMEM universities of their choice. All universities visited will issue the degrees. The Scheme of itineraries (see under section 2.2) shows the schedule of mobility.

**Third-country students and scholars**

2.13 Describe the mechanisms within the Masters consortium to reach out to potentially interested third-country students and scholars.

The institutions of the consortium will be using the following means to promote the CoMEM program:
− Through a common website, describing all details of the course and its specialisations, admission criteria etc.;
− Through targeting existing students and alumni in each partner institution;
− Through announcements in the Coastal and Marine Engineering literature;

---

If you apply for an Erasmus Mundus Masters Course including a preparatory year, you may not be in a position to provide this information fully.
Through producing recruitment literature, such as leaflets, brochures and flyers to be handed out at conferences, international seminars and other international meetings of academics and students in relevant disciplines;

Through the use of each partners’ national and international network (see Appendix 4);

Through promotion at International Overseas Recruitment Fairs.

2.14 With reference to question 2.10, describe if special conditions apply to third-country students. Also, describe the application and selection process for third-country scholars.

No special conditions apply to third-country students or scholars, except for the tuition fees as indicated in 2.10. Also selection criteria are the same for third-country students and EU students. The procedures will be followed as described in section 2.10.

2.15 Describe how third-country students and scholars will be distributed within the Masters consortium.

In principle a rather large number of students can be absorbed (say 50 - 75 students per year). Therefore a total of 25 non-EU students should not give any problems. Distribution within the consortium is based on the preference of the students regarding the specialisation. Up to a certain level an even distribution is aimed for during the selection procedure.

2.16.1 Describe the services provided by the Masters consortium to welcome and host third-country students and scholars (international office, housing facilities, coaching and counselling, welfare services, language courses, activities aiming at social integration, services for students with a family or special needs, other support measures, etc.).

The coordinating institution of the Consortium will co-ordinate and apply for scholarships for the Consortium. The coordinating institution will administer and pay the scholarships to students and scholars, and proceed evaluations from the third country students and scholars.”

All participating universities run international programmes for many years. Each has an Office for International Relations with a longstanding experience in welcoming students and scholars within various EU and non-EU programmes. Proven mechanisms and personal coaching are in place for housing, counselling, social integration, language support, etc. All information for students is available on the websites of the respective universities (addresses are provided in section 1). As an example, Trondheim where the students will initially arrive, offers the following services:

- Easy on-line registration procedures
- Language courses in Norwegian
- Accommodation guarantee
- Buddy program
- International Student Union/Erasmus student network – social program
- Welcome program
- Social secretaries
- Fully equipped International House which takes care of the MUNDUS students

The welcome programme (see appendix 5 for more details) includes an orientation week to familiarise the students with the national and local conditions, including:

- Introduction to Norwegian culture, “living” and economics
- Assistance in formalities related to police and other public authorities
- Assistance in getting settled in the accommodation arena
- Guided tours of museums and city walk
- Orientation on student facilities and the campus
- Information on various international student organisations at NTNU
- Introduction on available sporting facilities
- Boat trip on the Trondheim fjord, including visit to a former fishing village
- Welcoming party

2.17 Describe the financial management and payment mechanisms of scholarships for third-country students and scholars within the Masters consortium.
The funds received from the European commission by the co-ordinating university are deposited into the official account of TU Delft (see annex 2). Students and scholars will be paid from this account, according to the guidelines from the Erasmus Mundus administrative and financial handbook.

The partner universities agreed that the third country students have to pay a standard tuition fee of 8,000 Euro's/year to the co-ordinating university. This levelled amount covers a/o the local enrolment fees at the different partner universities, according to the national regulations.

The flat fee of 15,000 Euro will be used for the organization and travel costs of the two annual meetings in January (fixed) and a co-ordinating meeting (not fixed). The individual institutions fund all components of the course and the modules.

Language policy

2.18 Describe the language policy applied within the Masters consortium, including language(s) of instruction, language(s) of examinations, and language-learning support offered.

The English language is being used for instruction and the relevant lecture notes, material, etc. during the joint curricula. Also the tests and examinations, either oral or written, are taken in English. Thus good English skills are a pre-requisite. For the other European native languages courses will be available to provide some basic knowledge of the local language.

Quality assurance and evaluation

2.19 Describe how the quality of the Masters Course as well as ECTS mechanisms (including the “grading scale”) or other mechanisms based on ECTS are assured. Explain if quality assurance is carried out internally by the Masters consortium or by an external body. Any processes and procedures developed in response to specific needs of the study programme should be detailed.

CoMEM is based on existing Master of Science programs. On top of the existing quality assurance and evaluation procedures at the partner universities CoMEM intends to put the following measures in place:

− Full integration and use of ECTS (grading, workload and credit points, transcript of records, etc.)
− A set of Education & Examination regulations.
− A CoMEM Examination Board (one professor of each partner university), which monitors twice a year:
  Quality of the program
  Certificates and diplomas
  Establishment of pre-requisites
  Proper use of ECTS
  Use of a diploma supplement
  Use of as a high-level learning and communication platform (the Dutch national standard open platform BlackBoard will be considered; it is generally available through internet login)
  Centralised evaluation procedure at the end of the course
  Visitation commission (members from academia and industry)

2.20 Describe the evaluation and quality assessment mechanisms within the Masters consortium. Indicate if third-country students and scholars will be invited to assess the Masters Course at the end of their stay.

Further to 2.19 the quality of the CoMEM will be guaranteed by the following internal mechanisms, present already for several years at most of the consortium partners.

2.20.1 Course Evaluations
The participants, including students from third-countries, evaluate all courses of the CoMEM. The student’s opinion about the course (content, teacher, presentation, etc.) is monitored via the Sensor software (developed by TU Delft). At the end of each module, the student completes the questionnaire through BlackBoard. The results from these evaluations are distributed among the course management, local Directors of Education, and the teachers of the courses. The local Director of Education will follow up on the results if needed. Improvements fall under his/her responsibility. The local co-ordinator of the university where they are at that moment interviews students who leave the course prematurely. The university where the last semester is spent has an exit interview with the student.

The last day of the joined courses the staffs of the universities involved review the summary of the “Sensor” valuations with the students. The results are distributed among the teachers of that particular course and improvements are required to be made during the next year.

At the end of the second year, all graduates are being interviewed (the exit interview).

2.20.2 Quality assessment

A visitation commission, consisting of 5 members, monitors the quality of the CoMEM course. The members of the commission consist of 3 academic staff of universities who are not involved in the course and 2 representatives of an External Advisory Board.

The course is monitored by a set of learning outcomes (Section 2.3).

Co-operation aspects

2.21 Describe the co-operation mechanisms within the Masters consortium.

To maintain a truly integrated Masters Course co-operation is vital. Research cooperation between the universities exists for many years at various levels. The mechanism to ensure this cooperation on the educational level is as follows:

− The CoMEM-Board handles the admission and selection procedures. The board meets in January for student selection and at a second (not-fixed in time) to evaluate the selected students of the current year.
− During the meetings the Board also evaluates the educational quality and, if necessary, adjusts the content of the course. The Board will continue to fine-tune the contents of the course throughout the year, in close collaboration with the core course teachers and other teaching staff.
− The international offices of the various universities that take care of the students’ housing, visa, etc. are in close contact to allow maximum mobility of students in between the universities.
− The present state of co-operation is based on Socrates exchange agreements between the partner universities.
− Letters of endorsement of the authorities of the partner universities (commitment to multiple degrees, etc.)

2.22 Describe briefly the administrative staffing and the funding of the Masters consortium.

The CoMEM programme is co-ordinated by TU Delft. The Course Director is a full-time staff member at TU Delft. Funding of the additional administrative staffing of the program is carried partly by industry contributions and partly by the participating universities from the tuition fee. The responsible staffs of the participating universities are mentioned in the partner information pages in section one of this application.

Preparatory year

2.23 In case your Masters consortium applies for a Course including a preparatory year describe the reasons why. Describe the activities you will carry out during the preparatory year, in particular indicate if the Masters Course will run during the preparatory year.

The consortium does not apply for a preparatory year.

Other aspects
2.24 **Explain to which extent the Masters Course is linked to research activities.**

All staff involved with the modules is closely involved in research activities. The CoMEM course is linked with the research by thesis projects of the students during the second year. Indications of the research activities of the partner universities are in Appendices 3 and 5. All the universities of the consortium are amongst the leading European universities playing a valued role in research.

2.25 **Explain in how far the Masters Course has a distinctive European added value.**

The CoMEM program has a strong "European dimension" because its methodology, aims, effects and prospects do not only apply to a specific country or region, but it points at its relevance for the EU as a whole. The CoMEM course is truly European in scope, since it directly involves education and research groups from five universities in three different EU countries in addition to Norway as part of the European Economic Area. In addition it indirectly, through Socrates student and staff exchange, links with programs in most of the other EU countries. The addition of third country students and scholars further increases the European added value, as it puts forward the image of the CoMEM program.

The CoMEM course has many established contacts with universities and industry outside the EU. These links are very important as the coastal and marine sector has a distinct international character and it will allow the European consultants and industry to stay competitive. The CoMEM network is an excellent way to educate the upcoming European managers in the related fields.

2.26 **Describe any aspect of the Masters Course which offers potential examples of good practice and which could be disseminated more widely.**

The concept of the COMEM course could very easily be applied to other disciplines. Universities with an interest in combining and integrating their specialities in education into a broader and more extensive offer could make use of the experiences gained from the CoMEM programme.

The close co-operation with the government, consultants and industry is another good example, which can be disseminated more widely. The integrated use of e-techniques for the administrative and educational matters (registration, virtual learning platform, evaluation) is a good example of how to run complicated courses in an efficient way.

2.27 **Describe any other aspect of the Masters Course which is not covered by the previous questions and which can be of relevance for the assessment of your application.**

All partners of this Erasmus Mundus Consortium bilaterally have strategic partners at universities in third countries. The consortium intends to strengthen the strategic relationships by seeking multilateral partnerships and thereby strengthening and harmonising European relations with third countries with a focus on SE Asia.
SECTION 3 - GRANT REQUESTED

- Please read the relevant section of the *Erasmus Mundus Call for Proposals EAC/04/05* and the *Administrative and Financial Handbook for Erasmus Mundus Projects*.

- The requested grant of 15,000 € refers to the first year of the five-year period for which an Erasmus Mundus Masters Course will be selected. This amount applies to Erasmus Mundus Masters Courses with or without a preparatory year.

| Total grant requested by the Consortium for the academic year 2006/2007 | 15,000 € |
SECTION 4 - DECLARATION

To be completed by the legal representative of the co-ordinating institution indicated under Section 1, point 6.1 above.

I, the undersigned, certify that the information contained in this application is correct to the best of my knowledge.

If my institution is private in nature, I declare on my honour that it has the financial and operational capacity to carry out the proposed Masters Course.

I declare on my honour that neither I nor my institution is in any of the situations listed under point 12 of the Erasmus Mundus Call for Proposals EAC04/05.

I am aware that the Erasmus Mundus Masters consortium which submits this application commits itself to participate in Action 1 and Action 2 (scholarships) of the Erasmus Mundus programme for a period of five years, if my application is successful.

I am aware that penalties may be applied in the case of a false declaration.

In the event that my application is successful, I authorise the Commission to publish on its internet site or in any other appropriate medium:
- The name and address of the beneficiary of the Erasmus Mundus grant;
- The subject of the grant;
- The amount awarded to the approved Masters Course.

Place: Delft
Date: 27/05/05 (day/month/year)

Signature: 

Stamp of the co-ordinating institution:

Name and position in capitals: Mr. J. van 

SECRETARY GENERAL

Checklist

The application is completed in full. All questions have been answered. ❌
Each page has been numbered. ❌
The application has been typewritten or word-processed. ❌
The original application has been signed by the legal representative of the co-ordinating institution and stamped. ❌
Copies of letters from the appropriate authorities of each institution participating in the Masters Course, confirming their agreement with the application as submitted are attached. ❌
Proof of the official recognition of the degree(s) is attached. ❌
The financial identification form has been filled in and duly signed in original (see Annex 2). ❌
The original application and 2 copies thereof are being sent to the address indicated on page 2 of the application form by rapid post and e-mail, in the same envelope and before the closing date. ❌
Paper and electronic copies of this application are being sent to the National Structures in the countries of each of the participating institutions before the closing date. ❌
Annex 1: Letters of endorsement of consortium partners
To whom it may concern

The undersigned, representing the Board of Delft University of Technology, certifies that the information in this application is complete and correct to the best of our knowledge. All Erasmus Mundus activities will be implemented on the basis of written agreements with the relevant authorities of the partner institutions.

Delft University of Technology is committed to research and education in the Civil Engineering fields of Coastal and Marine Engineering and Management. As the leading partner in this proposal we consider a European master's programme in these themes to be an important development, not just for the consortium universities but also for research and education in these fields in Europe.

The proposed partners represent Europe's leading institutions in research and education, and Delft University has close ties with all of them. As such the consortium is particularly strong and attractive to third countries students.

Delft University of Technology will do the utmost to respect and observe the Erasmus Mundus Master obligations and make this particular programme a success.

Yours sincerely,

[Signature]

Ir. G.J. van Luijk
President

Enclosure(s) 1
To whom it may concern

Dated: 23.05.2005

Our ref.: 2005/2714
Your letter dated:

Your ref.:

Erasmus Mundus application

The Norwegian University of Science and Technology (NTNU) hereby confirms that it fully supports the application for a European Master in Coastal and Marine Engineering and Management. NTNU also guarantees that it will provide full institutional support for the European Master in Coastal and Marine Engineering and Management, if it is implemented. Coordinator at our institution is: Professor Eivind Bratteland.

Per Ivar Maudal
University Director
To whom it may concern

Dated: 2005-05-24
Our ref.: EB
Your letter dated: 
Your ref.: 

Statement

The Department of Civil and Transport Engineering as well as the Faculty of Engineering Science and Technology are both supporting and endorsing the application for the Erasmus Mundus Master Course in Coastal and Marine Engineering and Management.

This Master programme is considered an important and integrated part of our international activities with significant future possibilities for collaboration and development of joint activities between the partner European universities.

The main contribution from NTNU will be based on and linked to the already existing International Master of Science programme in Coastal and Marine Civil Engineering.

Division of Marine Civil Engineering will be carrying out the majority of the project, however, in close and active cooperation with other Departments and Faculties. Local co-ordinator is Prof. Eivind Bratteland.

[Signature]
Torbjørn Digernes, Dean
Faculty of Engineering Science and Technology

[Signature]
Asbjørn Hovd, Head of Department
Department of Civil and Transport Engineering

Address
Høgskolenringen 7A
NO-7491 Trondheim

Tel. +47 73 59 46 40
Fax +47 73 59 70 21
Org. no. NO 974 767 880
LETTER OF ENDORSEMENT

Erasmus Mundus Project

Barcelona, 19th May 2005

The undersigned, Vice-Rector Juan Jesús PÉREZ, the legal representative of the Universitat Politècnica de Catalunya in Barcelona (Spain) declares here the willingness of the Universitat Politècnica de Catalunya (UPC) to take active part in the Erasmus Mundus proposal:

"CoMEM Erasmus Mundus Msc -Coastal and Marine Engineering and Management"

We agree with the content of the project and the collaboration with all the other partners involved in this project.

In the context of higher education system, our main contribution is teaching, tutorial and master project direction activities within the knowledge area of coastal and marine engineering and management. It also includes coordination with other university programmes and support of the foreseen exchanges.

Our participation in the project will be carried out by the department of Hydraulic, Maritime and Environmental Engineering, and specifically by Prof. Agustin Sanchez-Arcilla who will also act as co-ordinator person at the UPC.

Contact at the UPC

Prof. Agustin Sanchez-Arcilla
UPC
Dept. Hydraulic, Maritime and Environmental Eng. (Civil Engineering High School)
Campus Nord - Edif. D1
Jordi Girona, 1-3
08034 Barcelona
SPAIN
Tel. +34 93-4016468
Fax. +34 93-4011861
e-mail: agustin.arcilla@upc.edu

SIGNATURE:

Juan Jesús PÉREZ
Vice-Rector of Doctorate, Research and International Relations
26 May 2005

CONFIRMATION OF AGREEMENT FOR ERASMUS MUNDUS MASTERS COURSE
APPLICATION - Coastal and Marine Engineering and Management

I, PROFESSOR CAROLINE THOMAS, Deputy Vice Chancellor of the University of Southampton confirm on behalf of the University of Southampton that

1. The University of Southampton will take an active part in the Erasmus Mundus Masters Course: "Coastal and Marine Engineering and Management".

2. The University of Southampton agrees with the content of the application as submitted and agrees to collaborate with the other partners named in the application.

3. The main contribution of the University of Southampton will be providing a strong coastal focus with an emphasis on management and environmental matters.

4. Participation in the project will be carried out by the School of Civil Engineering and the Environment and the School of Ocean and Earth Science and specifically by Professor Robert Nicholls who will act as co-ordinator at the University of Southampton.

5. I am duly authorised by the University of Southampton to give this confirmation on its behalf.

SIGNED at the
UNIVERSITY OF SOUTHAMPTON
this 26th day of May 2005

[Signature]

PROFESSOR CAROLINE THOMAS
DEPUTY VICE-CHANCELLOR
24 May 2005

To whom it may concern

City University, London, hereby confirms its agreement with the application for
the Erasmus Mundus Programme for the Erasmus Mundus MSc - Coastal
and Marine Engineering and Management (COMEM), as submitted.

Yours sincerely

[Signature]

Prof C Arcoumanis
Dean, School of Engineering and Mathematical Sciences
City University
London
Annex 2: Financial identification
### Rekeninghouder

<table>
<thead>
<tr>
<th>NAAM</th>
<th>Delft University of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRES</td>
<td>Stevinweg 1</td>
</tr>
<tr>
<td>GEMEENTE/STAD</td>
<td>Delft</td>
</tr>
<tr>
<td>LAND</td>
<td>Netherlands</td>
</tr>
<tr>
<td>POSTCODE</td>
<td>2628 CN</td>
</tr>
<tr>
<td>BTW-NUMMER</td>
<td>NL00015695669B01</td>
</tr>
<tr>
<td>CONTACTPERSOON</td>
<td>M.R. van Zelst</td>
</tr>
<tr>
<td>TELEFOON</td>
<td>+31 15 2786463</td>
</tr>
<tr>
<td>E-MAIL</td>
<td><a href="mailto:M.R.vanZelst@tudelft.nl">M.R.vanZelst@tudelft.nl</a></td>
</tr>
</tbody>
</table>

### Bank

<table>
<thead>
<tr>
<th>BANKNAAM</th>
<th>ABN - AMRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRES</td>
<td>Coolsingel 119</td>
</tr>
<tr>
<td>GEMEENTE/STAD</td>
<td>Rotterdam</td>
</tr>
<tr>
<td>POSTCODE</td>
<td>3012 AG</td>
</tr>
<tr>
<td>REKENINGNUMMER</td>
<td>543084841</td>
</tr>
<tr>
<td>IBAN (verplicht)</td>
<td>NL43ABNA0543084841</td>
</tr>
<tr>
<td>SWIFT</td>
<td>ABNANL2A</td>
</tr>
</tbody>
</table>

### Opmekingen

**Bankstempel + Handtekening**

**Vertegenwoordiger van de Bank** (Beide verplicht)

**Datum + Handtekening Rekeninghouder:** (Verplicht)
Annex 3: Reference documents of formal approval of degree
Dear Sir / Madam,

Please find enclosed a transcript of the so-called CROHO register, listing all MSc programs at Delft University of Technology accredited and approved by law.

The MSc Hydraulic Engineering is highlighted. The original and official document can be accessed via the following website: http://www.lbgroep.nl.

On behalf of Delft University of Technology,

[Signature]

Prof. M.J.F. Stive  
Chair of Coastal Engineering  
Scientific Director of Water Research Centre Delft
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Degree Program</th>
<th>V.O.</th>
<th>N.V.</th>
<th>E.B.</th>
<th>W.G.</th>
<th>C.E.</th>
<th>Degree Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>20436</td>
<td>60360</td>
<td>Aerospace Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20437</td>
<td>60346</td>
<td>Applied Earth Sciences</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20438</td>
<td>60446</td>
<td>Applied Mathematics</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20439</td>
<td>60447</td>
<td>Applied Physics</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20440</td>
<td>60361</td>
<td>Architecture, Urbanism, and Building Sciences</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20441</td>
<td>60339</td>
<td>Biochemical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20442</td>
<td>60338</td>
<td>Biomedical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20443</td>
<td>60337</td>
<td>Chemical and Biochemical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20444</td>
<td>60437</td>
<td>Chemical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20445</td>
<td>60352</td>
<td>Civil Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20446</td>
<td>60341</td>
<td>Computer Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20447</td>
<td>60330</td>
<td>Computer Science</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20448</td>
<td>60342</td>
<td>Computer Science</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20449</td>
<td>60353</td>
<td>Electrical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20450</td>
<td>60359</td>
<td>Electrical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20451</td>
<td>60179</td>
<td>Engineering &amp; Policy Analysis</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20452</td>
<td>60178</td>
<td>Engineering &amp; Policy Analysis</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20453</td>
<td>60364</td>
<td>Geodetic Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20454</td>
<td>60355</td>
<td>Industrial Design Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20455</td>
<td>60354</td>
<td>Integrated Product Design</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20456</td>
<td>60366</td>
<td>Life Science &amp; Technology</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20457</td>
<td>60365</td>
<td>Management of Technology</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20458</td>
<td>60358</td>
<td>Marine Technology</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20459</td>
<td>60368</td>
<td>Materials Science &amp; Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20460</td>
<td>60449</td>
<td>Mechanical Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20461</td>
<td>60357</td>
<td>Media &amp; Knowledge Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20462</td>
<td>60349</td>
<td>Nanoscience</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20463</td>
<td>60378</td>
<td>Offshore Engineering</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20464</td>
<td>60356</td>
<td>Strategic Product Design</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20465</td>
<td>60359</td>
<td>Systems and Control</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20466</td>
<td>60348</td>
<td>Systems Engineering, Policy Analysis and Management</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20467</td>
<td>60348</td>
<td>Systems Engineering, Policy Analysis and Management</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
<tr>
<td>20468</td>
<td>60358</td>
<td>Transport, Infrastructure &amp; Logistics</td>
<td>VOLTD</td>
<td>120</td>
<td>n.v.t</td>
<td>n.e.e</td>
<td>n.e.e</td>
<td>n.e.e</td>
</tr>
</tbody>
</table>
25 May, 2005

Statement concerning national recognition of degrees

The Norwegian Centre for International Cooperation in Higher Education, which is a public agency under the auspices of the Norwegian Ministry of Education and Research and Erasmus Mundus National Structure, hereby confirms that according to the Norwegian Act relating to universities and university colleges, an accredited university may establish courses and study programmes at all levels without prior assessment of the Ministry. Thus, the universities are autonomous in deciding what programmes to establish and are themselves responsible for the quality assurance procedures.

The degree proposed by the Norwegian University of Science and Technology for an Erasmus Mundus application is thus recognized nationally.

Sincerely,

Vidar Pedersen /s/
Advisor
PROOF OF RECOGNITION
"CoMEM Erasmus Mundus Msc -Coastal and Marine Engineering and Management"

Barcelona, 23rd May, 2005

The undersigned, Vice-Rector Juan Jesús PÉREZ, the legal representative of the Universitat Politècnica de Catalunya (UPC) in Barcelona (Spain), declares that "CoMEM Erasmus Mundus Msc -Coastal and Marine Engineering and Management" is composed at UPC by the Master programmes:

- Master in Port Engineering and Management, that was approved by Board of Governors of the UPC in 1997 and is official since then;
- International Master in Management in Coastal and Estuarial Zones, that was approved by Board of Governors of the UPC in 2002 and is official since then.

Under the Spanish current legislation, UPC is a self-governing body legally responsible for the Master degrees that it offers.

SIGNATURE: [Signature]

Juan Jesús PÉREZ
Vice-Rector of Doctorate, Research and International Relations
Universitat Politècnica de Catalunya
Preamble

1. Title: MSc course in Environmental Coastal Engineering

A Full Time/Modular programme leading to MSc with exit points at Postgraduate Certificate and Postgraduate Diploma.

The programme will be delivered by the Department of Civil and Environmental Engineering in the Faculty of Engineering and Applied Science and The School of Ocean and Earth Science on the Faculty of Science.

2. Rationale:

This is an existing programme which has been revised to fit within the National Qualifications Framework and with current agreed University and Faculty structures. It also takes into account the Faculty agreed strategy (approved by ASQC in February 2001) of reducing the overall number of programmes, while providing increased flexibility, and harmonising rules and structures across the Faculty. The programme has been in existence in roughly the present form for four years, and has an average intake of about eight students. The Department has significant research strengths in this area (5* in the 2001 RAE) and was awarded 21/24 in the QAA subject review.

The Department has a target size of 40 FTE students on its taught Masters programmes. The places on this programme contribute to this target. The target market for this programme will be engineers and scientists with suitable qualifications and experience wishing to work in coastal engineering.

3. Process of Creation:

This Programme Specification and Preamble were drafted by Dr Paul Tosswell, one of the two Course Directors, revised after extensive consultation within the Department of Civil and Environmental Engineering and with the Faculty of Engineering and Applied Science. They were finalised by the Course Directors, approved by the Departmental Postgraduate Masters Programmes Coordination Committee on 16 April 2002 and by the Faculty Courses Sub-Committee on 23 April 2002. Extracts from the minutes of these committees are attached as Annexe 1.

4. External Adviser:

External advice is supplied by a range of organisations associated with the Coastal Engineering field. The course is adapted to suit the requirements of the employment market. All the advising organisations offer research projects and many employ previous graduates.
In addition many also contribute to the taught part of the course. The External Adviser's report has not yet been received but will be forwarded to Faculty and University Committees together with the Departmental response.

5. Admissions:

We will offer a place to any applicant who can show evidence of ability and background adequate to undertake the course.

Applicants are expected to have at least an upper second class honours degree in a relevant engineering or scientific discipline. In addition evidence of numeracy will be required. Applicants with other, equivalent, qualifications or appropriate experience are considered on an individual basis.

6. Details of Structure:

The programme follows the standard Faculty structure for Postgraduate taught programmes.

All the taught modules in the programme already exist, and have been approved by Faculty. Module specifications for these are attached as Annexe 3. They have received the approval of the Faculty Academic Policy and Quality Committee.

Significant features of the programme are:
- The individual research project, linked to a practical 'real world' research interest, often conducted within an appropriate organisation.
- Preparatory teaching on research skills and dissertation presentation, for the individual research project;
- The Design Exercise (CE608), which is a major piece of groupwork bringing together many of the taught subjects into a practical design.
- The programme includes a several field trips to view coastal engineering in action.

7. Learning, Teaching and Assessment Methods:

Modules within the programme make use of a range of learning teaching and assessment methods based around lectures, supervised coursework, and private research and study. As well as summative coursework assignments, many modules will also make use of formative coursework in the form of essays and design tasks, etc. These will be reviewed and support, explanatory notes and formative feedback will be provided.

Students generally undertake research placements in an organisation working in coastal engineering.

Group and team working are a key component of the programme. Some coursework is carried out in groups and the learning results are presented to the class. The Design Exercise involves group coordination and collaboration, and exploration of individual strengths and weaknesses.
Some components of the modules are taught by experienced engineers and scientists from a
number of organisations, under close supervision by the Course Director and departmental
colleagues. This brings up-to-date learning into the course, alongside the ongoing research
activities of departmental academic staff.

As with all programmes in the Department, student learning is also supported by our printed
handouts, course handbooks, module and departmental web pages, the use of numerous
relevant web pages, practical sessions, etc.

Key skills are developed explicitly in many of the modules and, particularly, in the individual
research project. In particular, individual research, team working, time management, critical
analysis and decision-making, presentation skills, information handling and project planning
are developed in the individual and group project work. The course handbook provides a
mapping between individual modules and the key skills developed in them.

Summative assessment for the taught part of the programme is by a combination of
coursework (in the form of essays, design assignments, reports, oral presentations etc) along
with unseen 1.5-2.0 hour examinations, as defined in the programme specification. An
element of peer assessment, moderated by the lecturer, is used in some group work. The mix
has been developed over a number of years as appropriately addressing the learning outcomes
expected from an engineering Master’s degree. Individual research projects are assessed by a
written dissertation in a standard form.

The progression rules for the programme are the Faculty standard rules for postgraduate
taught programmes which are summarised in Appendix 2 of the programme specification.
Further detail of how these are specifically applied appears in the body of the programme
specification.

Formative feedback to students on their progress is provided by small group supervisions and
by formal written feedback on the summative coursework assignments, peer assessments and
feedback on group performance in the summative examinations.

8. Accreditation: Not applicable

9. Learning Outcomes and Benchmarks:

The learning outcomes for the various exit awards are given in detail in the programme
specification, and are informed by the QAA’s National Qualifications Framework for Masters
level.

10. Intermediate Exit Awards:

Students completing any module qualify for a Certificate of Continuous Professional
Development (which is not an award of the University). Students unable or not wishing to
complete the MSc may leave with a Postgraduate Certificate (60 credits) or Postgraduate
Diploma (120 credits).
The criteria for these awards are detailed in Appendix 2 of the programme specification. The learning outcomes are at the appropriate level as defined in the National Qualifications Framework, applied to the learning outcomes of the programme as specified in the programme specification.
Audit Trail for Faculty and Departmental/School Approval Processes for Programme Specifications

Faculty Approval Processes - MSc Environmental Coastal Engineering

Courses Sub-Committee 23 April 2002

3. MRes/MSc Programmes

3.1 MRes Coastal Engineering for Climate Change
3.2 MSc Engineering for Development
3.3 MSc Environmental Coastal Engineering
3.4 MSc Transportation Planning and Engineering

Received: copies of preambles and programme specifications.

It was reported that there had been a series of departmental meetings with MSc Co-ordinators to try to achieve uniformity and that ISVR colleagues had also read the documentation. It was noted that some amendments were required and that these would be passed back to the co-ordinator for each programme. It was noted that there was a problem with formatting with the MRes programme specification. It was pointed out that this course had started in 2000 and that some mention of how it was progressing might be useful. This proposal also gives detail about progression requirements where it should just refer to Appendix 2.

Resolved: Dr Moy to inform Dr Hounsell. Agreed Chair’s action when amendments have been made.

Courses Sub-Committee 12 December 2001

2.1.2 MSc Environmental Coastal Engineering

Received: the programme specification describing the existing programme.

There were similar comments about regulations and some clarification was required about the mode of study. It was pointed out that the first sentence in Section 11 needed to be reworded.

Resolved: to approve the programme specification subject to Chair’s action before forwarding to the Quality Unit.
Departmental/School Approval Processes – MSc Environmental Coastal Engineering

Postgraduate Masters Programmes Co-ordination Committee 16 November 2001

Discussed: Requirements for revised programme specifications.

Resolved: To produce a revised programme specification, with overall co-ordination by Dr. Hounsell, for consideration at the next Faculty Courses sub-committee meeting.

Postgraduate Masters Programmes Co-ordination Committee 16 April 2002

Discussed: Requirements for further revisions to programme specification and production of the preamble.

Resolved: To submit the revised programme specification and preamble for consideration at the next Faculty Courses sub-committee.
26 May 2005

Professor L Boswell
School of Engineering and Mathematical Sciences

Dear Laurie

MSc in Maritime Operations and Management

This letter is to confirm that the above programme was approved under the University’s Stage 2 approval and CAPS Project (Credit, Assessment and Programme Specifications) in March 2003 for commencement in September 2003. This approval was ratified by the Quality and Standards Committee of Senate.

Yours sincerely,

Gill Barker (Mrs)
Assistant Registrar - Partnerships
Direct tel: 020 7040 3137
E-mail: g.barker@city.ac.uk
List of codes to be used in the application

You will find here the codes you will have to use when filling in the application, i.e.:

- Country codes
- Region codes (NUTS)

Country codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MT</td>
<td>Malta</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>NL</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CY</td>
<td>Cyprus</td>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>Region Code</td>
<td>Region Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE1</td>
<td>Bruxelles Cap. Brusel Hof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE21</td>
<td>Antwerpen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE22</td>
<td>Limburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE23</td>
<td>Oost-Vlaanderen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE24</td>
<td>Vlaams Brabant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE25</td>
<td>West Vlaanderen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE31</td>
<td>Brabant Wallon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE32</td>
<td>Hainaut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE33</td>
<td>Liege</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE34</td>
<td>Luxembourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE35</td>
<td>Namur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK001</td>
<td>Københavns og Frederikaberg Kommuner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK002</td>
<td>Københavns Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK003</td>
<td>Frederiksborg Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK004</td>
<td>Roskilde Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK005</td>
<td>Vestsjyllands Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK006</td>
<td>Storstroom Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK007</td>
<td>Bornholms Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK008</td>
<td>Fyns Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK009</td>
<td>Sønderjylland Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00A</td>
<td>Ribe Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00B</td>
<td>Vejle Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00C</td>
<td>Ringkøbing Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00D</td>
<td>Århus Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00E</td>
<td>Viborg Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK00F</td>
<td>Nordjylland Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE11</td>
<td>Stuttgart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE12</td>
<td>Karlsruhe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE13</td>
<td>Freiburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE14</td>
<td>Tübingen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE91</td>
<td>Braunschweig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE92</td>
<td>Hannover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE93</td>
<td>Lüneburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE94</td>
<td>Weser-Ems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE21</td>
<td>Oberbayern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE22</td>
<td>Niederbayern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE23</td>
<td>Oberpfalz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE24</td>
<td>Oberfranken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE25</td>
<td>Mittelfranken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE26</td>
<td>Unterfranken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE27</td>
<td>Schwaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE3</td>
<td>Berlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE4</td>
<td>Brandenburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE5</td>
<td>Bremen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE6</td>
<td>Hamburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA1</td>
<td>Düsseldorf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA2</td>
<td>Köln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA3</td>
<td>Münster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA4</td>
<td>Detmold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA5</td>
<td>Arnsberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA1</td>
<td>Koblenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEA2</td>
<td>Trier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEB1</td>
<td>Rheinland-Pfalz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEB2</td>
<td>Rheinheussen-Pfalz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td>Saarland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DED1</td>
<td>Chemnitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DED2</td>
<td>Dresden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DED3</td>
<td>Leipzig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HESSEN</td>
<td>SACHSEN-ANHALT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE71</td>
<td>DARMSTADT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE72</td>
<td>GIESSEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE73</td>
<td>KASSEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE8</td>
<td>MECKLENBURG-VORPOMMERN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| DEE1   | DESSAU         |
| DEE2   | HALLE          |
| DEE3   | MAGDEBURG      |
| DEF    | SCHLESWIG-HOLSTEIN |
| DEG    | THURINGEN      |

<table>
<thead>
<tr>
<th>GR</th>
<th>ELLADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOREIA ELLADA</td>
<td>GR3</td>
</tr>
<tr>
<td>GR11</td>
<td>ANATOLIKI MAKEDONIA, THRAKI</td>
</tr>
<tr>
<td>GR12</td>
<td>KENTRIKI MAKEDONIA</td>
</tr>
<tr>
<td>GR13</td>
<td>DYTIKI MAKEDONIA</td>
</tr>
<tr>
<td>GR14</td>
<td>THESSALIA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KENTRIKI ELLADA</th>
<th>GR21</th>
<th>IPEIROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR22</td>
<td>IONIA NISIA</td>
<td></td>
</tr>
<tr>
<td>GR23</td>
<td>DYTIKI ELLADA</td>
<td></td>
</tr>
</tbody>
</table>

| GR24 | STEREIA ELLADA |
| GR25 | PELOPONNISSOS |

<table>
<thead>
<tr>
<th>ES</th>
<th>ESPANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOROESTE</td>
<td>ES11</td>
</tr>
<tr>
<td>ES12</td>
<td>ASTURIAS</td>
</tr>
<tr>
<td>ES13</td>
<td>CANTABRIA</td>
</tr>
</tbody>
</table>

| ES21 | PAIS VASCO |
| ES22 | NAVARRA |
| ES23 | LA RIOJA |
| ES24 | ARAGON |

| ES3 | COMUNIDAD DE MADRID |
| ES7 | CANARIAS |

<table>
<thead>
<tr>
<th>FR</th>
<th>FRANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR1</td>
<td>ILE DE FRANCE</td>
</tr>
</tbody>
</table>

| FR21 | BASSIN PARISIEN |
| FR22 | CHAMPAGNE – ARDENNE |
| FR23 | PICARDIE |
| FR24 | HAUTE NORMANDIE |
| FR25 | CENTRE |
| FR26 | BASSE NORMANDIE |
| FR3  | NORD - PAS DE CALAIS |

| FR41 | LORRAINE |
| FR42 | ALSACE |
| FR43 | FRANCHE-COMTE |

| FR61 | AQUITAINE |
| FR62 | MIDI-PYRENEES |
| FR63 | LIMOUSIN |
| FR71 | CENTRE-EST |
| FR72 | RHÔNE-ALPES |
| FR81 | MEDITERRANEE |
| FR82 | LANGUEDOC-ROUSSILLON |
| FR83 | PROVENCE-ALPES-CÔTES D’AZUR |
| FR84 | CORSE |
## Application form for Action 1

### DEPARTEMENTS D'OUTRE-MER

<table>
<thead>
<tr>
<th>Code</th>
<th>Département</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR01</td>
<td>Guadeloupe</td>
</tr>
<tr>
<td>FR02</td>
<td>Martinique</td>
</tr>
<tr>
<td>FR03</td>
<td>Guyane</td>
</tr>
<tr>
<td>FR04</td>
<td>Réunion</td>
</tr>
<tr>
<td>FR51</td>
<td>Pays de Loire</td>
</tr>
<tr>
<td>FR52</td>
<td>Bretagne</td>
</tr>
<tr>
<td>FR53</td>
<td>Poitou-Charente</td>
</tr>
<tr>
<td>IE011</td>
<td>Border</td>
</tr>
<tr>
<td>IE021</td>
<td>Dublin</td>
</tr>
<tr>
<td>IE022</td>
<td>Mid-East</td>
</tr>
<tr>
<td>IE012</td>
<td>Midland</td>
</tr>
<tr>
<td>IE013</td>
<td>West</td>
</tr>
<tr>
<td>IE023</td>
<td>Mid-West</td>
</tr>
<tr>
<td>IE024</td>
<td>South-East (IRL)</td>
</tr>
<tr>
<td>IE025</td>
<td>South-West (IRL)</td>
</tr>
<tr>
<td>IT11</td>
<td>Piemonte</td>
</tr>
<tr>
<td>IT12</td>
<td>Val di Aosta</td>
</tr>
<tr>
<td>IT13</td>
<td>Liguria</td>
</tr>
<tr>
<td>IT2</td>
<td>Lombardia</td>
</tr>
<tr>
<td>IT6</td>
<td>Lazio</td>
</tr>
<tr>
<td>IT71</td>
<td>Abruzzo</td>
</tr>
<tr>
<td>IT72</td>
<td>Molise</td>
</tr>
<tr>
<td>IT31</td>
<td>Trentino-Alto Adige</td>
</tr>
<tr>
<td>IT32</td>
<td>Veneto</td>
</tr>
<tr>
<td>IT33</td>
<td>Friuli-Venezia Giulia</td>
</tr>
<tr>
<td>IT8</td>
<td>Campania</td>
</tr>
<tr>
<td>IT51</td>
<td>Toscana</td>
</tr>
<tr>
<td>IT52</td>
<td>Umbria</td>
</tr>
<tr>
<td>IT53</td>
<td>Marche</td>
</tr>
<tr>
<td>IT</td>
<td>Sardegna</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg (Grand-Duché)</td>
</tr>
<tr>
<td>NL11</td>
<td>Groningen</td>
</tr>
<tr>
<td>NL12</td>
<td>Friesland</td>
</tr>
<tr>
<td>NL13</td>
<td>Drenthe</td>
</tr>
<tr>
<td>NL</td>
<td>Noord-Nederland</td>
</tr>
<tr>
<td>NL31</td>
<td>Utrecht</td>
</tr>
<tr>
<td>NL32</td>
<td>Noord-Holland</td>
</tr>
<tr>
<td>NL33</td>
<td>Zuid-Holland</td>
</tr>
<tr>
<td>NL34</td>
<td>Zeeland</td>
</tr>
<tr>
<td>AT</td>
<td>Osterreich</td>
</tr>
<tr>
<td>AT31</td>
<td>Oberösterreich</td>
</tr>
<tr>
<td>AT32</td>
<td>Salzburg</td>
</tr>
<tr>
<td>AT33</td>
<td>Tirol</td>
</tr>
<tr>
<td>AT34</td>
<td>Vorarlberg</td>
</tr>
<tr>
<td>AT11</td>
<td>Burgenland</td>
</tr>
<tr>
<td>AT12</td>
<td>Niederösterreich</td>
</tr>
<tr>
<td>AT13</td>
<td>Wien</td>
</tr>
<tr>
<td>AT2</td>
<td>Vorarlberg</td>
</tr>
<tr>
<td>AT3</td>
<td>Burgenland</td>
</tr>
</tbody>
</table>

---

**ERASMUS MUNDUS PROGRAMME**

Application form for Action 1
<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>AT21 KÄRNTEN, AT22 STEIERMARK</td>
</tr>
<tr>
<td>Portugal</td>
<td>PT CONTINENTE, PT11 NORTE, PT12 CENTRO, PT13 LISBOA E VALE DO TEJO, PT14 ALENTEJO, PT15 ALGARVE</td>
</tr>
<tr>
<td>Finland</td>
<td>FI MANNER-SUOMI, FI12 ETELÄ-SUOMI, FI13 ITÄ-SUOMI, FI14 VALI-SUOMI, FI15 POHJOIS-SUOMI, FI16 UISIMAA (SUURALUE)</td>
</tr>
<tr>
<td>Sweden</td>
<td>SE SVERIGE, SE01 STOCKHOLM, SE02 ÖSTRA MELLANSVERIGE, SE04 SYDSVERIGE, SE0A VÄSTSVERIGE</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>UK UNITED KINGDOM, UKC1 TEES VALLEY AND DURHAM, UKC2 NORTHUMBERLAND, TYNE AND WEAR, UKE1 EAST RIDING AND NORTH LINCOLNSHIRE, UKE2 NORTH YORKSHIRE, UKE3 SOUTH YORKSHIRE, UKE4 WEST YORKSHIRE, UKF1 DERBYSHIRE, NOTTINGHAMSHIRE, UKF2 LEICESTERSHIRE, RUTLAND, NORTHAMPTONSHIRE, UKF3 LINCOLNSHIRE, UKH1 EAST ANGLIA, UKH2 BEDFORDSHIRE AND HERTFORDSHIRE, UKH3 ESSEX, UKL1 WEST WALES AND THE VALLEYS, UKL2 EAST WALES</td>
</tr>
<tr>
<td>England (UK)</td>
<td>UKE1 EAST RIDING AND NORTH LINCOLNSHIRE, UKE2 NORTH YORKSHIRE, UKE3 SOUTH YORKSHIRE, UKE4 WEST YORKSHIRE</td>
</tr>
<tr>
<td>Wales (UK)</td>
<td>UKL1 WEST WALES AND THE VALLEYS, UKL2 EAST WALES</td>
</tr>
<tr>
<td>London</td>
<td>UKH1 EAST ANGLIA, UKH2 BEDFORDSHIRE AND HERTFORDSHIRE, UKH3 ESSEX, UKI1 EAST ANGLIA, UKI2 BEDFORDSHIRE AND HERTFORDSHIRE</td>
</tr>
<tr>
<td>North East (UK)</td>
<td>UKE1 EAST RIDING AND NORTH LINCOLNSHIRE, UKE2 NORTH YORKSHIRE, UKE3 SOUTH YORKSHIRE, UKE4 WEST YORKSHIRE</td>
</tr>
<tr>
<td>South West (UK)</td>
<td>UKK1 GLOUCESTERSHIRE, WILTSHIRE AND NORTH SOMERSET, UKK2 DORSET, SOMERSET, UKK3 CORNWALL AND ISLES OF SCILLY, UKK4 DEVON</td>
</tr>
<tr>
<td>West Midlands</td>
<td>UKG1 HEREFORD &amp; WORCESTERSHIRE, WARWICKSHIRE, UKG2 SHROPSHIRE, STAFFORDSHIRE, UKG3 WEST MIDLANDS</td>
</tr>
<tr>
<td>North West (UK)</td>
<td>UKD1 CUMBERLAND, UKD2 CHESHIRE, UKD3 GREATER MANCHESTER, UKD4 LANCASHIRE, UKD5 MERSEYSIDE</td>
</tr>
<tr>
<td>London</td>
<td>UKI1 EAST ANGLIA, UKI2 BEDFORDSHIRE AND HERTFORDSHIRE, UKI3 ESSEX</td>
</tr>
<tr>
<td>Wales (UK)</td>
<td>UKL1 WEST WALES AND THE VALLEYS, UKL2 EAST WALES</td>
</tr>
<tr>
<td>Country</td>
<td>Designation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SOUTH EAST (UK)</td>
<td>SCOTLAND</td>
</tr>
<tr>
<td>UKJ1</td>
<td>BERKSHIRE, BUCKINGHAMSHIRE, OXFORDSHIRE</td>
</tr>
<tr>
<td>UKJ2</td>
<td>SURREY, EAST AND WEST SUSSEX</td>
</tr>
<tr>
<td>UKJ3</td>
<td>HAMPSTEAD, ISLE OF WIGHT</td>
</tr>
<tr>
<td>UK55</td>
<td>GREATER LONDON</td>
</tr>
<tr>
<td>UKJ4</td>
<td>KENT</td>
</tr>
<tr>
<td>UKM1</td>
<td>NORTH EASTERN SCOTLAND</td>
</tr>
<tr>
<td>UKM2</td>
<td>EASTERN SCOTLAND</td>
</tr>
<tr>
<td>UKM3</td>
<td>SOUTH WESTERN SCOTLAND</td>
</tr>
<tr>
<td>UKM4</td>
<td>HIGHLANDS AND ISLANDS</td>
</tr>
<tr>
<td>UKN</td>
<td>NORTHERN IRELAND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISLAND</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>ISLAND</td>
</tr>
<tr>
<td>LI</td>
<td>LIECHTENSTEIN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORGE</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>NORGE</td>
</tr>
<tr>
<td>NO01</td>
<td>OSLO OG AKERSHUS</td>
</tr>
<tr>
<td>NO02</td>
<td>HEIDMARK OG OPPLAND</td>
</tr>
<tr>
<td>NO03</td>
<td>SØR-ØSTLANDET</td>
</tr>
<tr>
<td>NO04</td>
<td>AGDER OG ROGALAND</td>
</tr>
<tr>
<td>NO05</td>
<td>VESTLANDET</td>
</tr>
<tr>
<td>NO06</td>
<td>TRØNDELAG</td>
</tr>
<tr>
<td>NO07</td>
<td>NORD-NORGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČESKÁ REPUBLIKA</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>ČESKÁ REPUBLIKA</td>
</tr>
<tr>
<td>CZ01</td>
<td>PRAHA</td>
</tr>
<tr>
<td>CZ02</td>
<td>STŘEDNÍ ČECHY</td>
</tr>
<tr>
<td>CZ05</td>
<td>SEVEROVÝCHOD</td>
</tr>
<tr>
<td>CZ06</td>
<td>JIHOVÝCHOD</td>
</tr>
<tr>
<td>CZ03</td>
<td>JIHOZÁPAD</td>
</tr>
<tr>
<td>CZ04</td>
<td>SEVEROZÁPAD</td>
</tr>
<tr>
<td>CZ07</td>
<td>STŘEDNÍ MORAVA</td>
</tr>
<tr>
<td>CZ08</td>
<td>Ostravsko</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESTI</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>EESTI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KYPROS</td>
<td></td>
</tr>
<tr>
<td>CY</td>
<td>KYPROS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATVJA</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>LATVJA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIETUVA</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>LIETUVA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGYARORSZÁG</td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>MAGYARORSZÁG</td>
</tr>
<tr>
<td>HU01</td>
<td>KÖZÉP-MAGYARORSZÁ</td>
</tr>
<tr>
<td>HU02</td>
<td>KÖZÉP-DUNÁNTÚL</td>
</tr>
<tr>
<td>HU03</td>
<td>NYUGAT- DUNÁNTÚL</td>
</tr>
<tr>
<td>HU04</td>
<td>DÉL- DUNÁNTÚL</td>
</tr>
<tr>
<td>HU05</td>
<td>ÉSZAK-MAGYARORSZÁ</td>
</tr>
<tr>
<td>HU06</td>
<td>ÉSZAK-ALFÖLD</td>
</tr>
<tr>
<td>HU07</td>
<td>DÉL-ALFÖLD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALTA</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>MALTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLSKA</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>POLSKA</td>
</tr>
<tr>
<td>PL01</td>
<td>DOLNOSŁASKIE</td>
</tr>
<tr>
<td>PL02</td>
<td>KLUAWSKO-POMORSKIE</td>
</tr>
<tr>
<td>PL03</td>
<td>LUBELSKIE</td>
</tr>
<tr>
<td>PL04</td>
<td>LUBUSKIE</td>
</tr>
<tr>
<td>PL05</td>
<td>ŁÓDZKIE</td>
</tr>
<tr>
<td>PL06</td>
<td>MAŁOPOLSKIE</td>
</tr>
<tr>
<td>PL07</td>
<td>MAZOWIECKIE</td>
</tr>
<tr>
<td>PL08</td>
<td>OPOLSKIE</td>
</tr>
<tr>
<td>PL09</td>
<td>PODKARPACKIE</td>
</tr>
<tr>
<td>PL0A</td>
<td>PODŁASKIE</td>
</tr>
<tr>
<td>PL0B</td>
<td>POMORSKIE</td>
</tr>
<tr>
<td>PL0C</td>
<td>ŚLASKIE</td>
</tr>
<tr>
<td>PL0D</td>
<td>ŚWIEKTORŻYSKIE</td>
</tr>
<tr>
<td>PL0E</td>
<td>WARMINSKO-MAZURSKIE</td>
</tr>
<tr>
<td>PL0F</td>
<td>WIELKOPOLSKIE</td>
</tr>
<tr>
<td>PL0G</td>
<td>ZACHODNIOPOMORSKIE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOVENIJA</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>SLOVENIJA</td>
</tr>
<tr>
<td>SK</td>
<td>SLOVENSKÁ REPUBLIKA</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
</tr>
<tr>
<td>SK01</td>
<td>BRATISLAVSKÝ KRAJ</td>
</tr>
<tr>
<td>SK21</td>
<td>TRNAVSKÝ KRAJ</td>
</tr>
<tr>
<td>SK22</td>
<td>TRENČIANSKY KRAJ</td>
</tr>
<tr>
<td>SK23</td>
<td>NITRIANSKY KRAJ</td>
</tr>
<tr>
<td>SK31</td>
<td>ŽILINSKY KRAJ</td>
</tr>
<tr>
<td>SK32</td>
<td>BANSKOBYSSTRICKÝ KRAJ</td>
</tr>
<tr>
<td>SK41</td>
<td>PREŠOVSKÝ KRAJ</td>
</tr>
<tr>
<td>SK42</td>
<td>KOŠICKÝ KRAJ</td>
</tr>
</tbody>
</table>
## APPENDIX 1 LIST OF COURSES PER INSTITUTE

### Course contents (C=Compulsory, O=Optional)

#### SEMESTER 1 (Trondheim)

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CODE</th>
<th>ECTS</th>
<th>C/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine physical environment</td>
<td>TBA4265</td>
<td>7.5</td>
<td>C</td>
</tr>
<tr>
<td>Geotechnical eng. Calculation methods</td>
<td>TBA5100</td>
<td>7.5</td>
<td>C</td>
</tr>
<tr>
<td>Spreading of pollution</td>
<td>TGB4235</td>
<td>7.5</td>
<td>C</td>
</tr>
<tr>
<td>Dynamic response to irregular loadings</td>
<td>TBA4275</td>
<td>7.5</td>
<td>O</td>
</tr>
<tr>
<td>Transport systems</td>
<td>TBA4305</td>
<td>7.5</td>
<td>O</td>
</tr>
</tbody>
</table>

Total credits, semester 1. 30

* Select one of the optional courses

#### SEMESTER 2 (Delft)

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CODE</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc multidisciplinary project</td>
<td>CT4061</td>
<td>11</td>
</tr>
<tr>
<td>Philosophy and ethics for civil engineers</td>
<td>WM0312CT</td>
<td>4</td>
</tr>
<tr>
<td>Probabilistic design</td>
<td>CT4130</td>
<td>4</td>
</tr>
<tr>
<td>Bed, bank and shore protection</td>
<td>CT4310</td>
<td>4</td>
</tr>
<tr>
<td>Ports and waterways 1</td>
<td>CT4330</td>
<td>4</td>
</tr>
<tr>
<td>Computational modelling of flow and transport</td>
<td>CT4340</td>
<td>4</td>
</tr>
<tr>
<td>Structural dynamics</td>
<td>CT4140</td>
<td>4</td>
</tr>
<tr>
<td>Offshore soil mechanics</td>
<td>OT4624</td>
<td>3</td>
</tr>
<tr>
<td>Geology for civil engineers</td>
<td>TA4730CT</td>
<td>3</td>
</tr>
</tbody>
</table>

#### SEMESTER 3 (Barcelona)

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CODE</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine climate and hydrodynamics</td>
<td>C.04.170.00</td>
<td>7</td>
</tr>
<tr>
<td>Coastal protection. Hard and soft works</td>
<td>C.04.176.00</td>
<td>7</td>
</tr>
<tr>
<td>Numerical and hydraulic modelling</td>
<td>20057</td>
<td>4.5</td>
</tr>
<tr>
<td>Coastal and estuarine morphodynamics</td>
<td>C.04.182.00</td>
<td>4.5</td>
</tr>
<tr>
<td>Impacts, conflicts and risks</td>
<td>C.04.179.00</td>
<td>7</td>
</tr>
<tr>
<td>Specialization project (minor thesis)</td>
<td>C.04.183.00</td>
<td>11.5</td>
</tr>
</tbody>
</table>

#### SEMESTER 3 (Delft)

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CODE</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal morphology and coastal protection</td>
<td>CT5309</td>
<td>4</td>
</tr>
<tr>
<td>Wind waves</td>
<td>CT5316</td>
<td>3</td>
</tr>
<tr>
<td>Coastal inlets and tidal basins</td>
<td>CT5303</td>
<td>3</td>
</tr>
<tr>
<td>Integrated coastal zone management</td>
<td>CT5307</td>
<td>3</td>
</tr>
<tr>
<td>Turbulence in hydraulics</td>
<td>CT5312</td>
<td>3</td>
</tr>
<tr>
<td>Flood defences</td>
<td>CT5314</td>
<td>3</td>
</tr>
<tr>
<td>Computational hydraulics</td>
<td>CT5315</td>
<td>3</td>
</tr>
<tr>
<td>Ports and waterways 2</td>
<td>CT5306</td>
<td>4</td>
</tr>
<tr>
<td>Foundation engineering and underground</td>
<td>CT5330</td>
<td>4</td>
</tr>
<tr>
<td>construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakwaters and closure dams</td>
<td>CT5308</td>
<td>4</td>
</tr>
</tbody>
</table>
### Field work hydraulic engineering

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER 3 (Trondheim)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOPIC</strong></td>
<td><strong>CODE</strong></td>
<td><strong>ECTS</strong></td>
</tr>
<tr>
<td>Specialization project (minor MSc thesis)</td>
<td>TBA5700</td>
<td>11.25 C</td>
</tr>
<tr>
<td>Selected within one of the following areas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Coastal engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Port engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Marine civil engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Arctic offshore engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Marine geotechnics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal engineering II</td>
<td></td>
<td>3.75 C/O</td>
</tr>
<tr>
<td>Marine geotechnics</td>
<td></td>
<td>3.75 C/O</td>
</tr>
<tr>
<td>Port engineering</td>
<td></td>
<td>3.75 C/O</td>
</tr>
<tr>
<td>Flow induced vibrations</td>
<td></td>
<td>3.75 C/O</td>
</tr>
<tr>
<td>Structures in ice-infested waters</td>
<td></td>
<td>3.75 C/O</td>
</tr>
<tr>
<td>Safety and reliability</td>
<td></td>
<td>3.75 O</td>
</tr>
<tr>
<td>If available and applicable, study at UNIS, Svalbard in Arctic Offshore Eng. might be applied for</td>
<td></td>
<td>7.5 O</td>
</tr>
<tr>
<td>Geography, health and development. Other non-technical subjects can be chosen.</td>
<td>GEOG3506</td>
<td>7.5 C/O</td>
</tr>
<tr>
<td>Total credits, semester 3.</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

1 Select three specialization courses, totalling 11.25 ECTS. Depending on choice of specialization, various courses will be compulsory. Other specialization courses could be selected if approved by professor in charge.
2 For this option, one additional subject must be chosen.
3 One non-technical subject of 7.5 ECTS must be chosen. The given course is an example. Other courses might be selected if available, and provided approval by professor in charge.

### SEMESTER 3 (Southampton)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Audit and Risk Assessment</td>
<td>CENV6087</td>
<td>7.5  C</td>
</tr>
<tr>
<td>Maritime and Coastal Engineering</td>
<td>CENV6084</td>
<td>7.5  C</td>
</tr>
<tr>
<td>Applied Sediment Dynamics</td>
<td>SOES6011</td>
<td>7.5  C</td>
</tr>
<tr>
<td>Geographic Information Systems for Coastal Engineering</td>
<td>GEOG6012</td>
<td>7.5  C</td>
</tr>
</tbody>
</table>

### SEMESTER 3 (City)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime operations</td>
<td>EPM 782</td>
<td>7.5  C</td>
</tr>
<tr>
<td>Maritime law and insurance</td>
<td>EPM 784</td>
<td>7.5  C</td>
</tr>
<tr>
<td>Maritime technology</td>
<td>EPM 783</td>
<td>7.5  O</td>
</tr>
<tr>
<td>Finance, accounting and economics</td>
<td>EPM 785</td>
<td>7.5  O</td>
</tr>
<tr>
<td>Management studies- Human resources, crisis and risk</td>
<td>EPM 786</td>
<td>7.5  O</td>
</tr>
</tbody>
</table>
Appendix 2 – Course syllabi
Trondheim syllabi

TBA4265 MARINE PHYS ENV
Marine Physical Environment
Marint fysisk miljø
Lecturer: Professor Sveinung Løset, Associate professor Øivind Aamtsen
Coordinator: Professor Sveinung Løset
Weekly hours: Autumn: 3F + 2Ø + 7S = 7.5 ECTS
Examination: Before Christmas Examination support: C
Exercises: Compulsory Grade: Letter grade
Learning outcomes: Knowledge and skills dealing with action and action effects from environmental processes as wind, currents, waves and ice in a marine environment.
Recommended previous knowledge: BSc in Civil Engineering or similar. Basic course in Fluid Mechanics.
Academic content: Marine physical processes. Description of waves, currents, wind and formation and mechanics of ice. Resulting consequences for marine activities. Fundamentals of statistical methods used in physical marine environment and an introduction to spreading processes. Special note: For students from developing countries, the ice topics are replaced by topics of particular interest for these students.
Teaching methods and activities: Lectures and exercises.
Course material: Information at the start of the semester. Textbook and lecture notes.
Evaluation form: Written 100%.

TBA5100 GEOTECH CALC METH
Geotechnical Engineering, Calculation Methods
Geoteknikk, beregningsmetoder
Lecturer: Associate professor Arnfinn Emdal
Weekly hours: Autumn: 3F + 2Ø + 7S = 7.5 ECTS
Examination: Before Christmas Examination support: D
Exercises: Compulsory Grade: Letter grade
Learning outcomes: The course is designed to develop basic skill in geotechnical design methods for slope stability, earth pressure, bearing capacity of foundations and piles as well as assessments of settlements and displacements.
Recommended previous knowledge: BSc degree in Civil Engineering or equivalent. Basic courses in geology and geotechnics.
Academic content: Relevant stress fields based on the theory of plasticity, basic elements and combinations. Principles and recipes for performing short-hand calculations of settlements, slope stability, earth pressure and bearing capacity of foundations and piles. The course aims at creating basic understanding through classical analytic tools and hand calculations as well as demonstrations of real design cases.
Teaching methods and activities: Lectures, calculation and laboratory exercises and a minor project work.
Course material: Information at the start of the semester, lecture notes.
Evaluation form: Written 100%.
TGB4235 SPREADING POLLUTION
Spreading of Pollution
Spredning av forurensning
Lecturer: Professor Sveinung Løset, Accosiate professor Øivind Amtsen
Coordinator: Professor Sveinung Løset
Weekly hours: Autumn: 3F + 2Ø + 7S = 7.5 ECTS
Examination: Before Christmas Examination support: C
Exercises: Compulsory Grade: Letter grade

Learning outcomes: The course aims to give students an introduction to mechanisms for dispersion and transport of pollution in various recipients (water, soil and air).


Teaching methods and activities: Lectures/colloquiums, exercises and laboratory demonstrations.

Course material: Lecture notes and selected papers. To be announced at start of course.

Evaluation form: Written 100%.

TBA4275 DYNAMIC RESPONSE
Dynamic Response to Irregular Loadings
Dynamisk respons på uregelmessige laster
Lecturer: Professor Geir Moe, Associate professor Øivind Amtsen
Coordinator: Professor Geir Moe
Weekly hours: Autumn: 3F + 2Ø + 7S = 7.5 ECTS
Time: Spring
Examination: Before Christmas Examination support: D
Exercises: None Grade: Letter grade

Learning outcomes: To familiarize the students with state-of-the-art methods to describe the environmental loads and responses to these, displacements of structures.

Recommended previous knowledge: TBA4265 Marine physical environment (in parallel) and some knowledge of structural dynamics.

Academic content: Environmental loadings (wind, waves, earthquakes) will be modeled as irregular time series, and considered as input to a system the produces environmental forces as output, and then in the next step the environmental forces will be considered as input and structural displacements may be found as output. This is done by means of transfer functions, which determine variance spectra of the output. Vital quantities such as the average numbers of peaks on various levels, average frequencies and expected extremes will be estimated from these spectra.

Teaching methods and activities: Lectures and exercises.

Course material: Textbook, lecture notes and selected papers.

Evaluation form: Written 100%.

TBA4305 TRANSPORT SYSTEMS
Transport Systems
Transportsystemet
Lecturer: Professor Tore Øivin Sager
Weekly hours: Autumn: 3F + 3Ø + 6S = 7.5 ECTS
Examination: Before Christmas Examination support: C
Exercises: Compulsory Grade: Letter grade

Learning outcomes: To provide knowledge and understanding of the freight transport systems and developments and the related logistics in the integrated transport chain.

Recommended previous knowledge: None. The course is taught in English. Exercises and the final test can be answered in Norwegian.

Academic content: Infrastructure and markets for all freight transport modes are characterized from the perspectives of logistics and transport economics. Key elements are market development, transport policy, competitive interfaces, organization, and the needs and strategies of the actors responsible for commercial transport functions. Terminals and special features of road, rail, sea, and air transport systems as part of the general logistics and supply chain are considered. Cost-benefit analysis and other methods of transport economics are introduced.

Teaching methods and activities: Lectures, seminars, and exercises.

Course material: Textbook, lecture notes, and selected papers.

Evaluation form: Written 100%.
TBA5700 COASTAL/MAR ENG SPEC
Coastal and Marine Civil Engineering, Specialization
Marin byggeteknikk, fordypning
Lecturer: Programme staff and external supervisors
Coordinator: Professor Eivind Bratteland
Weekly hours: Autumn: 36S = 22.5 ECTS
Examination: Before Christmas Examination support: D
Exercises: None Grade: Letter grade based on project work and oral examination

Learning outcomes: The specialization will give the student an in-depth theoretical knowledge and competence within a selected course area of the field. It will improve the student ability to do independent engineering/research work, and provide training in planning of projects, systematic processing of information and report writing.

Recommended previous knowledge: Passed examinations in the required basic courses necessary for the chosen specialization courses.

Academic content: The specialization in Coastal and Marine Civil Engineering is divided into 5 course areas:
1. Coastal Engineering
2. Port Engineering
3. Marine Civil Engineering
4. Arctic Offshore Engineering
5. Marine Geotechnics

The specialization consists of a project equivalent to 11.25 ECTS and normally three selected specialization courses listed below summing up to 11.25 ECTS. For each course area one of the specialization courses is compulsory. The specialization courses are:

- Coastal Engineering II (3,75 ECTS, compulsory for Coastal Engineering, (Professor Øivind A. Amtsen)
- Port Engineering (3,75 ECTS, compulsory for Port Engineering, (Professor Eivind Bratteland)
- Flow-Induced Vibrations (3,75 ECTS, compulsory for Marine Civil Engineering, (Professor Geir Moe)
- Marine Geotechnics (3,75 ECTS, compulsory for Marine Geotechnics, (Professor Lars Grande)
- Safety and Reliability (3,75 ECTS, (Professor Arvid Naess)

For Arctic offshore engineering there are two options:
1. Study at NTNU with the following course as compulsory:
   Structures in Ice-Infested Waters (3,75 ECTS, (Professor Sveinung Løset)
2. Study at UNIS, Svalbard with the following course as compulsory:
   Arctic Offshore Engineering (7.5 ECTS, (Professor Sveinung Løset).

Apart from the compulsory course given, the specialization normally requires at least one of the other courses listed to be included. The Professor in charge of the project work will inform about this. If the Professor in charge approves it, the student could choose one course given by others. The project work should include problems related to research and development within the chosen course areas. Whenever possible the project should be linked to local problems and challenges and preferably have a local supervisor. The project may comprise theoretical, numerical, experimental or field studies. If possible, fieldwork should be included. The specialization project will normally be a starting point for the thesis work in the spring term. The student can work individually or in a team.

Teaching methods and activities: Supervised project work. Depending on the number of participants the specialization courses may be lectured, given as seminars or taken as a self-study.

Course material: Lectures, selected texts from textbooks, papers etc.

Evaluation form: Project report and its oral presentation (50%) and oral examination in the specialization courses (50%).
GEOG 3506* Geography, Health and Development

Credits: 7.5 ECTS  
Semester: Autumn  
Lectures: 20 hours  
Seminars: 8 hours  
Compulsory: Assignment and presentation  
Assessment: Written examination (4 hours)

The course will be given in English and is designed for 3 groups:
- Students on the MPhil in Social Change Programme (anticipated to be the largest group)  
- Other (Norwegian) Geography Master’s students  
- Master’s students studying Health in ISH who take this course as an elective (listed in the study plan as an optional course for this study).

The course provides a general introduction to geographical aspects in health, with two main focuses: Health status, disease/injury and risk/risk factors. The geography of different levels of health services, with emphasis on demand and use, offer and accessibility, development, and treatment (self treatment, care and cure).

Aim and description of the course:
The course has a development perspective with emphasis on the situation in developing countries. More general international development trends are also covered. In addition to a common core curriculum, in-depth courses (curriculum options) are available: one which focuses on developing countries and one which is on western countries (focusing on the situation in Norway). The course covers studies on approaches to quantitative and qualitative methods.

Case studies. Part of the course will be based on individual reading, which will provide a basis for carrying out the assignment. These projects will be presented in seminars. A seminar will also be held on researching health and health geography in libraries and databases (3 hours).

Assignment and presentation must be approved before the student is allowed to take the examination.
Delft Syllabi

CT4061  Civil engineering project education

ECTS credits: 11
schedule:
Msc-programme, semester 1.1, 1.2, 2.1 and 2.2

lecturer
tutors from all sections
contact for students
Ylva de Haan room: 5.53 ext: 84915

Summary
Solve an actual and recent civil engineering problem in a multidisciplinary team. Integrate several studies and designs into a coherent entity, based on knowledge, understanding and skills acquired in the preceding years. Attention will be on quality control and the evaluation of the design process. Knowledge and skills obtained during CT4061 will be used in this project. The course is divided into three phases: phase 1: inception plan; phase 2: preliminary design and studies; phase 3: process evaluation with respect to interdisciplinary aspects; final report.

Description
Phase 1: preliminary investigation (Problem exploration and treatment). By means of supplied and found information (project file, informers, literature) an inventory and analysis of the problem must be made. This results in a (substantive) problem formulation and an objective. Coupled to that, a treatment will be formulated. Which methods will be used, which contribution can different disciplines provide to the project, which steps have been passed through successively, which information is still necessary, where can that information be found? Finally the organization of the group must be fixed.

Phase 2: design. At this stage is alternatively worked for the complete problem and for sub-problems. The work exists for a part of research, for a another part of developing design alternatives or solution alternatives, and from developing the sub-problems. Ongoing, the consistency with the whole design must be monitored.

Phase 3: Round-off. In the round-off, the last hand is laid to the results of the project. First of all the handed in report is discussed with the speculator team, whereupon the definite version is made. The participants evaluate the project, both substantive and concerning the project process. Finally, the presentation is prepared and a summary for the presentation is established.
Goal
1. Design learning on a sub-sector of civil engineering in multidisciplinary link.
2. Integrated appliance of knowledge and skills from previous years.
3. Application of design knowledge and skills from the first, second and third year.
4. Learning to work by means of an interdisciplinary approach.
5. Learning to report, present and defending the end product.
6. Learning to apply elementary quality guarantee principles (e.g. MCE, SWOT) during the design process.
7. Evaluate learning of the interdisciplinary work process

CourseType
team work

Testing
Prerequisite
plan of work, rough design, specialistic design and final design

Permitted materials
Everything

Test type
written and oral presentation for assessment. Start and final presentation and a briefing halfway through

Materials

syllabus:

• Available at BookShop Civiele Techniek.

obligatory lecturenote(s)/textbook(s):

• Available at BookShop Civiele Techniek.

obligatory other materials:

• Available at the lecturer.

recommended lecturenote(s)/textbook(s):

• Available at BookShop Civiele Techniek.
Philosophy, Technology Assessment and Ethics for CT

ECTS credits: 4
schedule:
MSc-programme, semester 2.2

lecturer
Dr. M. Brumsen
Dr. ir. K.F. Mulder

Summary
This course contributes abilities and knowledge of relevant backgrounds for recognizing, analysing and reasoning in a solution-oriented way about moral and societal problems that arise in the professional practice of engineers.

Description

Philosophy Module

- Introduction to and illustration of the course's aims: what is philosophy (methodology/ethics); illustration of the coherence of the three modules
- What is science, and what is technology? Brief overview of their history; positions on the influence of science and technology on society
- The fact/value distinction; logic and argumentation theory
- Analysis of the notion of causality in relation to: at the one hand, scientific explanations and responsibility of engineers at the other hand; notion of probability; statistics
- Methodology: foundations of scientific and technological knowledge; construction of models and their limitations; predictability of consequences

TA Module

- Why does technology fail? Technology Assessment as bridging the gap between society and the engineering community
- Introduction to TA-methods and traditional forecasting: extrapolations, experts interview and the 'common sense'-method, scenario's, scenario workshops
• Drivers of technological change, the relation between technological change and society
• Constructive Technology Assessment, participatory technology development
• Practice of TA; politics, steering technological innovation of Sustainable Development

Module Ethiek

• Introduction to moral dilemmas in engineering practice
• Analysis of moral dilemmas in engineering practice and their backgrounds; professional codes of practice and conflicting loyalties; legal rights and duties of engineers
• Ethics, i.e. the foundation of judgements about good and bad / responsible and irresponsible acts
• Responsibility of corporations and the law; ethical foundations of liability legislation; division of responsibility within organisations
• Collective decision-making / public choice and the role of the expert
• Integration of the above, and inventorisation of available solution strategies

Goal

Philosophy:

• Insight in the nature of philosophical and methodological problems
• Insight in the nature of scientific and technological knowledge (difference science-technology, science-pseudo-science)
• Knowledge of how scientific and technological knowledge are founded (truth/reliability; nature and limitations of models)
• Knowledge of positions on the interaction between science, technology and society
• Insight in the distinction between facts and values, which in practice are often intertwined
• Elementary knowledge of logic and argumentation theory

Technology Assessment:

• Ability to recognize patterns of interaction between technological and
societal change

- Ability to assess the value and limitations of TA-methods and -results
- Ability to apply some TA-methods to concrete situations

**Ethics:**

- Familiarity with and insight in problems of responsibility of engineers that arise in their professional practice
- Knowledge of and insight in the relevant background to these problems: ethics, law, public choice, functioning of organisations, historical development of all the foregoing
- Ability to reason consistently and solution-oriented about moral problems in professional engineering practice, including insight in available solution strategies (both at individual and collective level)

**CourseType**

- lecture

**Testing**

**Test type**

written exam (open questions and multiple choice)
Probabilistic Design

ECTS credits: 4
schedule:
MSc-programme, semester 1.1
and 1.2

lecturer
Prof. drs. ir. J.K. Vrijling
Prof. ir. A.C.W.M. Vrouwenvelder
tutor
Dr. ir. P.H.A.J.M. van Gelder
contact for students
Dr. ir. P.H.A.J.M. van Gelder room:
3.87 ext: 86544
appointments
secretariat of the section
Waterbouwkunde room: 3.73 ext:
83345

Summary
Probabilistic design approaches of civil structures, consisting of concrete, steel, timber, ground, rock, asphalt, etc. Stochastic loads coming from traffic, floor, wind, waves, water levels, etc. Goal is the theoretical background of the reliability theorie, strongly applied to civil engineering applications.

Description
Objectives of probabilistic design of civil structures.
Probability Calculus; Steps in a Risk Analysis; Inventory of possible unwanted events, effects and consequences; Determining and evaluating the risk.
Decision-making based on risk analysis; Decision-making under uncertainties;
Probabilistic analysis of the decision problem; Frame of reference concerning safety; Current dutch safety standards; Generally applicable safety standards.
Reliability of an element; Limit state functions, strength and load; Ultimate and serviceability limit states; Strength of concrete, steel, timber, soil, etc; Loads of traffic, wind, waves, water, earthquakes, precipitation, ice, etc; Time dependence.
Reliability calculation methods; Level III methods; Numerical integration; Monte carlo method; Level II methods; Non-linear limit state functions; Non-normally distributed variables; Dependent random variables; Comparison of different calculation methods.
Failure probability and life span; Deterioration processes; Risk calculation of systems with a variable rate of failure; Non availability; Markov processes; Load combinations.
Strength calculation with level I method; Linking the level I method to the failure probability calculation; Standardisation of alpha-values; Load combinations for level I strength calculations.
Reliability of systems; Probability of failure of the serial system; Probability of failure of the parallel system; FMEA (Failure Modes and Effects Analysis); FMECA (Failure Modes, Effects and Criticality Analysis); Event tree; Fault tree; Cause consequence chart; Reliability of correctable systems.
Scheduling the realisation of activities; Introduction to scheduling uncertainties; Influence of corrective measures on duration and costs; Maintenance; Introduction to maintenance strategies; Effect of maintenance on risk; Influence of inspections.
Application areas; Structural safety of buildings, dikes, offshore platforms, bridges, etc; Maintenance and management; Quality assurance; Safety management; Geostatistics; Reliability of software.

**Goal**
After the course, the student has to be able to do Level I, II and III calculations, risk-based optimisations and system probability calculations.

**CourseType**
- lecture

**Testing**

**Prerequisite**
Three questions during written examination.

Lecture notes on Probabilistic Design.

**Permitted materials**
No restrictions.

**Test type**

Written exam: three questions, they refer mainly to a different part of the course

**Grading**

calculation

one mark, based on written exam

**Materials**

obligatory lecturenote(s)/textbook(s):
• Probabilistic Design

Available at BookShop Civiele Techniek.

recommended other materials:

• Tentamenbundel

Available at BookShop Civiele Techniek.
**Bed, Bank and Shoreline Protection**

ECTS credits: 4

schedule:

MSc-programme, semester 2.1

lecturer

ir. H.J. Verhagen

ir. J. Olthof

contact for students

ir. H.J. Verhagen room: 3.88 ext: 85067

appointments

ir. H.J. Verhagen room: 3.88 ext: 85067

**Summary**

Design of shoreline protection along rivers, canals and the sea; load on bed and shoreline by currents, wind waves and ship motion; stability of elements under current and wave conditions; stability of shore protection elements; design methods, construction methods.

**Description**

- Flow: recapitulation of basics from fluid mechanics (flow, turbulence), stability of individual grains (sand, but also rock) in different type of flow conditions (weirs, jets), scour and erosion.
- Porous Media: basic equation, pressures and velocities on the stability on the boundary layer; groundwater flow with impermeable and semi-impermeable structures; granular filters and geotextiles.
- Waves: recapitulation of the basics of waves, focus on wave forces on the land-water boundary, specific aspects of ship induced waves, stability of elements under wave action (loose rock, placed blocks, impermeable layers)
- Design: overview of the various types of protections, construction and maintenance; design requirements, deterministic and probabilistic design; case studies, examples
- Materials and environment: overview of materials to be used, interaction with the aquatic environment, role of the land-water boundary as part of the ecosystem; environmentally sound shoreline design.

**Goal**

After this course the student has to:

* be able to design individually a shoreline protection along a river, a canal or the sea
* understand the processes acting on the land-water boundary and be able to judge
which parameters are relevant for the design
* be able to determine the boundary conditions for the design of a shoreline protection, and their probability of occurrence
* understand the basics of stability in flow and wave conditions (understand the concepts of Shields, Izbash, Sleath, Iribarren, Van der Meer)
* be able to design intermediate layers between armour and susoil (filter design), both using a granular filter as well as a geotextile
* be able to design relevant details, like a toe protection
* be able to determine the method to construct the design (execution methods), especially how to place the rock and/or concrete element as well as the bed protection

**CourseType**
- lecture
- computer supported studying

**Course Relations**
- CT4310 uses CT2320
- CT4310 uses CT4300
- CT4310 uses CT4320

**Testing**

**Test type**
Oral exam

**Grading**

**calculation**
Based on oral examination

**Materials**

**syllabus:**
- Bed, Bank and Shoreline protection; Course Information
  Available at the first lecture.

**obligatory lecture note(s)/textbook(s):**
- Bed, Bank and Shoreline protection (G.J. Schiereck)
  Available at bookshop and VSSD.

**obligatory other materials:**
- Several handouts (indicated on Blackboard)
  Available at the first lecture.

**recommended other materials:**
- Manual on the Use of Rock
  Available at BookShop Civiele Techniek.
Summary

- sea ports and terminals
- queueing systems for ports and inland waterways
- inland navigation and waterways
- environmental aspects

Description

Seaports and Terminals:

- Maritime transport
  Specific data of merchant ships, commodity and vessel types, tramp and liner trade
- Port functions and organisation
  Functions, transport chain, organisation of seaports
- Port planning methodology
Types of planning, planning process, planning tasks, general observations

- Planning and design of the water areas
  Ship manoeuvring and hydrodynamic behaviour, approach channels, manoeuvring areas within the port, port basins and berth areas, morphological aspects

- Planning and design of port terminals
  Services provided, terminal components, types of terminals, terminal capacity (maximum or optimum) and terminal dimensions

- Container terminals
  Container transport, terminal operations and lay-out development

**Queueing theory for ports and inland waterways:**

- Port studies
- Aspects in port design
  Organisation, ship handling, cargo handling and inland transport
- Methods for solving capacity problems in ports
  Empirical rules of thumb, queueing theory and simulation techniques
- Queueing theory
  Arrival process, service process, queue discipline
- Queueing systems
  M/M/1-system, M/M/n-system, M/G/1 M/D/1 and N/Ek/1 systems, M/D/n and D/M/n systems
- Queueing systems with more general distributions of arrival and service time
  Approach to an Ek/Em/1 queue system and approach to an Ek/Em/n queue system
- Some applications

Inland waterways:

- Shipping on inland waterways
  Significance of inland navigation, classification of ships and waterways, ship characteristics, ship types
- Interaction between ship and waterway
  Primary water movement, secondary water movement, remaining hydraulic phenomena
- Navigation speed
  Ship's resistance, installed engine power, example speed-engine power
- Navigation
  Encounters, overtaking manoeuvres, navigation in bends, cross sections, stopping distance
- Design of inland waterway profiles
  Design vessels, traffic intensity, cross-section and design parameters and
cross-sections in bends

- Natural waterways
  Navigation on rivers, improvements, classification of rivers, ship dimensions, river ports and mooring places.

Integration of environmental issues in port planning and design

- Environmental aspects which affect port-layout
  Land use planning, visual amenity, dangerous goods, dredging and disposal of dredged material, prevention nuisance, contamination of soil and groundwater, reception of ballast water and waste and wetlands and nature areas

- Relevant aspects for environmental impact assessment
  Environmental impact assessment, pollution control, ecology and nature habitats, use of recourses, social and gender aspects and quality of life

Goal

1. The student has understanding of his own capacity and affinity in the field of ports and waterways.
2. The student has a broad overview of the field ports and waterways and recognises the interest of related sciences.
3. The student understands the functions of ports and waterways in the total transport chain with different transport modalities.
4. The student has knowledge of vessel types and demands with respect to port infrastructure.
5. The student has knowledge of relevant hydraulic aspects for the design of the wet infrastructures.
6. The student is capable to develop a design of the lay-out of a port and a container terminal.
7. The student is capable to apply the queueing theory in order to determine capacities of service systems in ports and waterways.
8. The student has knowledge of hydraulic phenomena in the interaction between ship and inland waterway.
9. The student is capable to estimate the required dimensions of an inland waterway.
10. The student understands the relevance of environmental issues in port planning and design.

CourseType
- lecture
- case study
**Course Relations**
- CT4330 uses CT2320
- CT4330 uses CT3330
- CT4330 uses CT3340
- CT4330 uses CT4300

**Testing**
**Permitted materials**
One A4 with notes

**Test type**
Written exam

**Grading**
**Bonus**
The case study can be rewarded with a bonus of 1, 0.5 or 0 points; rewarding of the bonus only counts when the mark of next examination is at least 5 (not rounded off).

**calculation**
Based on the written examination and bonus points.

**Materials**
**syllabus:**
- Ports and terminals
- Service systems in ports and inland waterways
- Capacities of inland waterways
- Integration of environmental issues in port planning and design

Available at BookShop Civiele Techniek.
Computational modelling of flow and transport

ECTS credits: 4
schedule:
MSc-programme, semester 1.1 and 1.2

lecturer
Prof.dr.ir. G.S. Stelling
Dr. J.D. Pietrzak

contact for students
Dr. J.D. Pietrzak room: 2.97 ext: 85466

appointments
secretariat of the section
Vloeistofmechanica room: 2.91 ext: 81953

Summary
Elementary notions of computational modelling of flow and transport.

Description
The following topics are dealt with during the course:

- Ordinary Differential Equations, Box models/Mass spring systems
- Numerical methods for ODE's, consistency, convergence, stability, stiffness
- Transport equations, advection and diffusion
  Numerical methods for transport equations, CFL condition, Von Neumann analysis, Numerical diffusion
- 1D shallow water equations, Preissmann scheme, Staggered grids, applications

CourseType
- lecture
- practical
Course Relations

- CT4340 uses WI1316CT
- CT4340 uses WI2253CT

Testing

Prerequisite

Successful completion of three practicals

Test type

Written exam, open questions

Materials

syllabus:

- "Computational Modelling for Flow and Transport"

Available at BookShop Civiele Techniek.
Summary

Part 1:
STRUCTURAL VIBRATIONS. Analysis of continuous systems and systems with multiple degrees of freedom.

Part 2:
WAVE DYNAMICS. Tranverse and longitudinal waves in strings and rods and in piles respectively. Bendingwaves in railtracks.

Description

Part 1: Structural Vibrations
Systems with multiple degrees of freedom; Formulation of the system of equations of motion; Free vibration (Eigenvalue problem, natural frequencies, eigen vectors or principle modes); Orthogonality principles; Model Analysis; Initial conditions; Harmonic loadings (frequency respons function); Viscuous damped systems; Proportional damping; Rayleigh Quotient of discrete systems; Continuous systems (bending beam, shear beam, rod, torsional axle, tout string); Eigenvalue problem (natural frequencies, eigenfunctions or principle modes); Rayleigh Quotient of continuous systems.

Part 2: Wave Dynamics
Tranverse waves in a string (wave equation, excitation, reflections, non-reflective boundary element); The characteristic plane; Longitudinal waves in a thin rod (incident, reflected and transmided waves, Impedance); Longitudinal waves in a pile continuously interacting with a soil (spring foundation, visco-elastic foundation); Harmonic waves (reflection); Bending waves in a railway track (governing equation, resonance).
Goal
The goal of this course is to give an insight into possible idealisations of dynamic loads and the subsequent behaviour, the available calculation methods and the decision criteria.

CourseType
• lecture

Course Relations
• CT4140 uses CT2022
• CT4140 uses CT3110

Testing
Permitted materials
Consulting any written text brought in by the students is permitted during the exam; although texting (as well as talking) by mobile phone is prohibited.

Test type
Written open book exam.

Grading
calculation
The final grade is 2/3 of part 1 grade (67%) plus 1/3 of the part 2 (33%) grade

Materials
obligatory lecturenote(s)/textbook(s):
• Part 1: Structural Vibrations
  Part 2: Wave Dynamics

Available at BookShop Civiele Techniek.

obligatory other materials:
• Uitgewerkte tentamenopgaven A/B.

Available at BookShop Civiele Techniek.
MSc Curriculum Course Description
OE4624 Offshore Soil Mechanics
2004-2005 academic year

1a. Course code: OE4624
1b. Earlier code (if any): OT4624
2. Course title: Offshore Soil Mechanics
NL: Offshore grondmechanica
3a. Current TU Delft credits: 2 ECTS equivalent: 3
(ECTS credits are used in the remainder of this document.)
3b. Total student-teacher contact hours: 20
3c. Student credit distribution:
   Quarters: 2
   Activities: Classes 1.5
   Exercises 1.5
   Totals: 3.0
3d. Staff credit distribution:
   CE Geomechanics 3
4. Participation status:
   Required for: Required for OE MSc participants including a major accent on Bottom Founded Structures.
   Restricted elective for: --
   Free elective for: Any other qualified MSc participant.
   Although not required, this course can be handy for those including Subsea Engineering as well as Deep Sea Dredging or Marine Pipelines in their curricula.
5. Summary description:
   Successful participants can design offshore foundations at a superior knowledge level. This course makes this possible by extending one’s basic knowledge of soil mechanics to include a number of typical offshore applications. Topics include:
   - Axially and laterally loaded piles: linear and nonlinear behavior and computations,
   - Shallow spread footings for large structures: linear and nonlinear behavior and computations,
   - Influences resulting from cyclic pore pressure in the sea bed.
   - Field (at sea) and lab studies.
Coastal Morphology and Coastal Protection

ECTS credits: 4
schedule:
MSc-programme, semester 1.1

lecturer
Dr. ir. J. van de Graaff

contact for students
Dr. ir. J. van de Graaff room: 3.77
ext: 84846

appointments
secretariat of the section
Waterbouwkunde room: 3.73 ext: 83345

Summary
Sediment transport by waves and currents; bottom shear stress; dune erosion; erosion of coasts; sedimentation of channels; coast line and morphological computations; coastal protection measures.

Description
Introduction:
Key topics of course; active players (national, international); The Netherlands in the past (7000BC) and now; sediment transport due to waves and currents key element in solution of most actual problems.

Sediment transport:
Initiation of motion; role of bottom shear stress; sediment transport due to waves and currents; approach of amongst others Bijker, Van Rijn and Ribberink.

Distinction between longshore and cross-shore sediment transport. Sand and silt.

Calculation of longshore sediment transport:
Driving forces (amongst others radiation stress); bottom shear stress; current and sediment transport distribution perpendicular to the coast; CERC formula; other calculation methods; UNIBEST-LT.

Calculation of cross-shore sediment transport:
Dune erosion; equilibrium profiles (approach of Swart); UNIBEST-TC; Durosta.

Morphological development; coastline development:
Complex morphological computations (DELFT3D-MOR); Pelnard-Considère method; temporal and spatial scales; effects of building a port along a sandy coast; up-drift accretion and lee-side erosion.

Sedimentation of (navigation) channels:
Current perpendicular to channel axis; current approaching under an angle; changing sediment concentration verticals.

Coastal protection:
What is coastal erosion? Counter measures; artificial beach and shoreface
nourishments; groynes and row of piles; detached shore parallel offshore breakwaters (submerged/emerged); seawalls/revetments.

**Coastal Zone Management:**
Interrelationship of various aspects; legal means; formal institutes.

**Coastal research:**
Measuring methods; field observations; small scale physical research. Netherlands Center for Coastal Research; Delft Cluster; role of European Union.

**Dutch hot items:**
Coastal zone management; safety aspects; large land reclamation projects (Maasvlakte2; artificial islands); Technical Advisory Committee for Water Defences (TAW).

**Goal**
Achieve insight in the complexity of coastal engineering issues and problems. Achieve knowledge of the physical processes underlying coastal engineering issues. To be able to discern possible solutions of coastal engineering problems.

**CourseType**
Lectures with illustrations (video, numerical examples). Self-tuition.

**Course Relations**
- CT5309 uses CT4300
- CT5309 uses CT4320
- CT5309 uses CT5316
- CT5309 uses CT5317

**Testing**
Test type
Oral examination

**Grading**
calculation
One mark based on oral examination

**Materials**

- **obligatory lecturenote(s)/textbook(s):**
  - Lecture notes: "Coastal Morphology and Coastal Protection"
    
    Available at BookShop Civiele Techniek.

- **recommended other materials:**
  - Coastal Engineering Manual
    
    via Internet (pdf, downloadable)

- **recommended lecturenote(s)/textbook(s):**
  - TAW Leidraad "Zandige Kusten"
TAW Basisrapport "Zandige Kusten"

Available at BookShop Civiele Techniek.
CT5316

Wind waves

ECTS credits: 3
schedule:
MSc-programme, semester 1.2

lecturer
Dr.ir. L.H. Holthuijsen

contact for students
Dr.ir. L.H. Holthuijsen room: 3.63
ext: 84803

appointments
Dr.ir. L.H. Holthuijsen room: 3.63
ext: 84803

secretariat of the section
Vloeistofmechanica room: 2.91
ext: 81953

Summary

• observing and measuring wind waves, qualitative and quantitative description of wind waves, spectral characterisation

• growth curves, qualitative description of processes of wave growth and dissipation; spectral wave prediction models

• statistical description of wind waves, response spectra

Description

• Methods of observing and measuring waves at sea are explained with reference to various in-situ and remote sensing techniques. Waves are initially characterised with primary parameters such as the significant wave height. Waves are then characterised in more detail with the variance density spectrum (involving the Fourier transform).

• A simple method for wave prediction in idealised conditions is introduced, resulting in universal wave growth curves. Then, using the concept of the spectrum, the processes of generation by wind, non-linear wave-wave interactions and whitecapping are described. These processes are integrated with spectral wave propagation in numerical wave models.

• The short-term statistics of the waves (in particular the instantaneous values of the surface elevation and its extremes such as crest heights) is given, treating the sea surface elevation as stationary, Gaussian process. Sources for long-term statistics are given and two different approaches of
• The response of structures to the excitation of wind waves is defined in terms of spectral response functions of linear systems.

**Goal**

• To gain insight and knowledge of the phenomenon of wind waves and the qualitative and quantitative description of this phenomenon.

• To learn the basis of simple and advanced mathematical models to predict waves for given conditions of wind, bathymetry, coast lines etc.

• To understand technique to compute linear responses of structures to wind waves excitations.

**CourseType**

• lecture

**Testing**

**Prerequisite**

• Linear theory of surface gravity waves, basic statistics

• Partial differential equations

**Test type**

Oral exam

**Grading**

**calculation**

Oral exam

**Materials**

**syllabus:**

• Available at BookShop Civiele Techniek.
CT5303

Coastal inlets and tidal basins

ECTS credits: 3
schedule:
MSc-programme, semester 2.1

lecturer
Prof.dr.ir. M.J.F. Stive
Prof.dr.ir. H.J. de Vriend
Dr.ir. Z.B. Wang

contact for students
secretariat of the section
Waterbouwkunde room: 3.73 ext: 83345

appointments
secretariat of the section
Waterbouwkunde room: 3.73 ext: 83345

Summary
The course focuses on coastal inlets and tidal basins (estuaries, tidal rivers and lagoons), and aims to give insight in the phenomenological characteristics (geography, geology, morphology, sediment motion and hydrodynamics) and in the modelling of these characteristics (empirical, process-based and hierarchical model approaches).

Description
Phenomenology

• Global classification of estuaries and inlets
• Behaviour of elements of inlet and estuary systems (tidal marshes, channels and shoals, flood and ebb-tidal deltas, adjacent coastlines and barrier islands)
• Interaction morphology - vegetation
• Interaction morphology - benthos
• Scale classification in time and space
Empirical relations

- O’Brien: relation of cross-sectional channel area and tidal prism
- Gerritsen: relation of cross-sectional channel area and effective shear stress
- Relation of tidal flats versus total basin area
- Flats height
- Walton & Adams: relation of Volume ebb-tidal delta and tidal prism
- Bilse: cross-sectional area ebb-tidal delta and tidal prism

Tidal propagation and tide-driven transport

- basic 1D - equations
- deformation and asymmetry
- net transport versus net flow
- pumping mode (short basins)
- resonance and damping (long basins)
- 3D-flow patterns (coriolis and relaxation-effects)

Channels and shoals

- mechanisms of sediment exchange
- hypsometry effects
- dynamics of channels and shoals
- response to human interventions

Box models

- principle behaviour orientated models
- qualitative descriptions of system behaviour
- box model of Di-Silvio’s
- applied for hindcast long term developments of the Venetie estuary
• model of Van Dongeren
• applied for hindcast long term developments of the Friese Zeegat and Ditmarschen Bucht

1D - network models

• 1D-proces-base network models
• nodal-point relations for flow and sediment transport applied to the Westerschelde
• Estmorf model concept applied for Friese Zeegat
• linearization (Lorentz and morphology) applied for the western part of the Wadden Sea

Inlets : interaction of sub-systems

• behaviour basin
• behaviour ebb-tidal delta
• behaviour adjacent coastline
• deformation and asymmetry
• behaviour of two coupled systems : scale interactions
• forcing
• behaviour of coupled systems : scale interactions

Estuaries : 2D- and 3D models

• flow- and transport patterns (instantaneous and residual)
ebb and flood dominance

- curved channels
- coriolis effect
- sill formation
- density driven currents
- silt (consolidation effects and behaviour of mud)

**Inlets: 2D and 3D models**

- effect of waves (e.g. propagation in the basin)
- effects of locally generated waves
- implications for wave module in numerical models
- flow- and transport patterns (instantaneous and residual)
- channel-shoal interactions
- channel migration
- grain size distribution

**CourseType**
- lecture

**Testing**

**Permitted materials**

Dictate and notes

**Test type**

Oral exam

**Materials**

syllabus:
• Available at the first lecture.

**obligatory lecture note(s)/textbook(s):**

• CT5303 Coastal Inlets Tidal Basins

Available at BookShop Civiele Techniek.
Integrated Coastal Zone Management

ECTS credits: 3

schedule:

MSc-programme, semester 2.2

lecturer

Dr. ir. J. van de Graaff

ir. T.J. Zitman

ir. H.J. Verhagen

appointments

secretariat of the section

Summary

Various aspects relevant for the planning of the coastal zone. Natural system (biotic and abiotic); user functions with socio-economic relations. System analysis and policy analysis. Application in a practical setting (case study) with simulation game.

Description

The course responds to a number of higher level goals beyond the course itself, but to which the course contributes. These are associated with the introduction and implementation of ICZM and include, for example, the expressed need to examine key issues of decision making on urban and recreational development in vulnerable coastal section and integration of sectoral activities in coastal development. It also takes into account the policy objectives of sound Coastal Zone Policy, which emphasise local participation in decision making.

In sum, the course is part of a learning process which, by means of a structured programme, undertakes the formation of trained manpower capable of redressing identified problems and helping to build capable institutions, better able to manage and guide the development of the coastal zone.

The course consists of lectures, demonstrations and workshops. The guiding line through the whole course is the idea that a coastal zone should be regarded as an integrated system. This will be illustrated by using several case studies in several countries. One of these cases (the fictive estuary of “Pesisir Tropicana”) will be worked out in a workshop. In the case studies the coastal zone is regarded as a coastal land/water body in the sense that there are demands for various products and services that the Bay and its environs can supply – that is, it is a multiple-use resource. The regional economy of the area used in the exercise is similar to those in many coastal areas in the world, particularly in developing countries. There is a large urban complex, port facilities and industrial base, with a well developed service sector. Fishing is carried out in the coastal waters. In the hinterland, various types of primary production take place, including agriculture.
and mining. Wage levels, existing pollution control and production technologies are typical of many developing countries. Special attention will be given to the Worldbank Guidelines for CZM plans.

**Goal**

The objectives of the course are to:

1. Develop an appreciation for and know-how of conceptualisation, policy design, methodology, tools and techniques for coastal zone management

2. Gain an understanding and operational grasp of the interdependence of managerial functions related to the improvement of coastal planning and management

3. Appreciate the need for integration of coastal zone development policies and their implementation

4. Become familiar with the multi-disciplinary aspects of the CZM-approach and acquire the capabilities for guiding and supporting multi-disciplinary teams in complex situations

**CourseType**

Lectures, presentation of case studies, computer exercises and simulation game. Because Integrated Coastal Zone Management is mainly an attitude and less a skill, it has to be trained in a realistic setting. A fieldtrip to Zeeuws Vlaanderen and Belgium is part of the course.

**Testing**

**Prerequisite**

Sufficient participation in the workshop

**Test type**

- Oral evaluation in a small group after finalising the course and workshop.
- Exam: contents of the syllabus, results of the Pesisir Tropicana Case Study and Simulation Game

**Grading**

**calculation**

Based on oral evaluation
Materials

syllabus:

- Available at the Blackboard website.

obligatory lecture note(s)/textbook(s):

- Available at the first lecture.

recommended other materials:

- Software (Cress, Jesew, Cosmo, etc)

  Available at the first lecture.
CT5312  Turbulence in hydraulics

ECTS credits: 3

schedule:
MSc-programme, semester 2.2

lecturer
Dr.ir. W.S.J. Uijttewaal

tutor
Dr.ir. W.S.J. Uijttewaal

contact for students
Dr.ir. W.S.J. Uijttewaal room: 0.08
ext: 81371

appointments
secretariat of the section
Vloeistofmechanica room: 2.91
ext: 81953

Summary
Stochastic description of turbulence, experimental techniques, balance equations for mass, momentum and energy, Reynolds equations, closure problems, turbulent flows in practice, modelling turbulence, turbulent diffusion and dispersion.

Description
Stochastic description of turbulence: mean velocity, higher statistical moments, velocity correlations, energy density spectra.
Experimental techniques: single measurements, whole field techniques; flow visualisation; optical acoustical, and electromagnetical measurement methods.
Balance equations: conservation of mass, Navier-Stokes equations, turbulent kinetic energy, energy cascade.
Reynolds equation: decomposition of velocities in (ensemble) averaged and fluctuating velocities, the closure problem for the Reynolds stresses, turbulent transport.
Turbulent flows in practice: boundary layer approximation, the flow near a wall, free turbulence, flow in complex geometries, recirculation and separation.
Turbulence modelling: constant eddy viscosity, mixing length approximation, k-epsilon, Large Eddy Simulation.
Turbulent diffusion and dispersion: Reynolds-analogy, the effects of turbulence on dispersion.
Goal

- Insight in turbulence phenomena and associated non-linear processes
- The ability to make estimates concerning length scales and velocity scales that characterise the turbulent motions
- A feeling for the effects of turbulence on bed material, structures and the transport of matter
- Knowledge concerning currently applied turbulence models and their restrictions
- A view on new developments in the field of turbulence research

CourseType

- lecture

Course Relations

- CT5312 uses CT2100
- CT5312 uses CT3310

Testing

Test type

Oral exam

Grading

calculation

exam-grade

Materials

- obligatory lecturenote(s)/textbook(s):
  - "Turbulence in Hydraulics"
    Available at the Blackboard website.
ECTS credits: 3

schedule:
MSc-programme, semester 2.1

lecturer
Prof. drs. ir. J.K. Vrijling
ir. J. Weijers

appointments
secretariat of the section
Waterbouwkunde room: 3.73 ext: 83345

Summary

- the design of flood defences in the natural and the socio-cultural environment
- technical design of dikes
- improvement of existing dikes
- construction
- detailed design of toe protection, revetment etc.
- integrated solutions (River cities, room for Rivers)
- exercise

Description

Goal
Gain a clear understanding of the design philosophy of flood defences special and constructural modelling of the defences. Encourage creativity in designing sophisticated dikes.

CourseType
- lecture
- exercise
- excursion

Testing
Test type
oral exam (case study)

Materials

obligatory lecturenote(s)/textbook(s):

• Manuals flood defences, Waterkeringen

Available at the section secretariat.

obligatory other materials:

• Readers on several subjects

Available at the section secretariat.

recommended other materials:

• Leidraad rivierdijken
CT5315 Computational hydraulics

ECTS credits: 3

schedule:
MSc-programme, semester 2.2

lecturer
Prof. dr. ir. G.S. Stelling

tutor
Dr. J.D. Pietrzak

contact for students
Dr. ir. M. Zijlema room: 2.94 ext: 83255

appointments
secretariat of the section
Vloeistofmechanica room: 2.91 ext: 81953

Summary

Backgrounds of three-dimensional hydrostatic modelling. The course will be given once a week including practical. During the first practical, the flow model Delft3D-FLOW will be introduced in a tutorial manner. This model will be used in the following practicals. The content of the subsequent lectures and practicals are: specifying the initial and (open) boundary conditions, applying the Alternating Direction Implicit (ADI) technique for efficient computations, calculation of stratified flows and a sensitivity analysis for a case study.

Description

Goal

Learning some basics of applying a computation model with respect to hydrodynamics and hydraulics. Of crucial importance is the knowledge concerning the abilities and restrictions of the computer model.

CourseType

- lecture
- exercise
- practical

Testing

Test type
• Oral exam based on report
• Task

**Grading calculation**

Report grade

**Materials**

- obligatory lecturenote(s)/textbook(s):
  - Lecture notes
    
    Available at the first lecture.
  - obligatory other materials:
    - A list of literature
      
      Available at the first lecture.
  - recommended other materials:
    - User Manual of Delft3D-Flow
      
      Available at the first lecture.
ECTS credits: 4
schedule:
MSc-programme, semester 1.1

lecturer
Prof. ir. H. Ligteringen
ir. R. Groenveld

contact for students
ir. R. Groenveld room: 3.84 ext: 84740

appointments
secretariat of the section
Waterbouwkunde room: 3.73 ext: 83345

Summary

Functional design of port terminals

- ro/ro terminals
- liquid bulk terminals
- dry bulk terminals
- fishery ports
- marinas
- IWT-ports

Capacities of inland waterways

- capacities of open inland waterways
- capacities of constructions of inland waterways
- functional design of locks
Simulation models in ports and inland waterways

- introduction simulation models
- stochastic models
- computer simulation models/ boundary conditions/ evaluation output

Description

Ports and Terminals

- general cargo- and multipurpose terminals
  non-containerised general cargo, number of berths and quay length, storage area and overall terminal lay-out, multipurpose terminals
- ro/ro and ferry terminals
  lay-out ro/ro and ferry terminals, special design aspects
- liquid bulk terminals
  oil- and gas carriers, nature of the products, terminals, the berth, jetties, dolphins, storage areas, offshore terminals
- dry bulk terminals
  dry bulk commodities, dry bulk ships, unloading systems, loading systems, on-terminal handling and storage, climatic and environmental considerations
- fishery ports
  types of fishery ports, site selection, fishing vessels, port planning, unloading equipment, fishery port organisation and management
- marinas
  yachting and yachts, general lay-out of the port, basins and berths, port structures
- Ports and terminals for inland water transport
  vessels, types of ports, terminals

Capacities of inland waterways

- explanation terms used, operational capacity, intensity, density, water resistance, ship speed
- open waterways
  calculation methods based on knowledge and experience, virtual area, simulation
- closed waterways
  lock cycle, lock capacity, passing times, cycle times and waiting times
- vessel traffic service
  history, radar systems, VTS- Amsterdam-Tiel, registration and utilisation
• safety
  safety in general, risk analysis, probability of failure in practice, codes
• cases

**Service systems in ports and inland waterways**

• deterministic and stochastic models
• simulation tools random numbers, sampling from distribution functions, used for the description of port- and inland navigation systems
• computer simulation models description methods, components and attributes, structure of the computer model; examples of simulation models
• analysis of input- and output data characteristics of the relevant distribution functions, Chi square test, Kolmogorov Smirnov test.

**Goal**

1. The student is a full interlocutor of experts in the field of ports and waterways
2. The student is capable to analyse relevant processes in ports and waterways
3. The student is capable to develop a design of the wet infrastructure of a port
4. The student is capable to develop a functional of port terminals as:
   - liquid bulk terminals
   - dry bulk terminals
   - fishery ports and
   - marinas
5. The student has knowledge of the capacity controlling parameters of port systems
6. The student has knowledge of the capacity controlling parameters of inland waterway systems as locks
7. The student is capable to develop a functional design of a canal system with locks
8. The student has knowledge of traffic flow simulation models in ports and inland waterways for the estimation of capacity and safety

**Course Type**
• lecture
• exercise

Course Relations
• CT5306 uses CT3740
• CT5306 uses CT4330
• CT5306 uses CT5300
• CT5306 uses CT5303
• CT5306 uses CT5307
• CT5306 uses CT5308
• CT5306 uses CT5309
• CT5306 uses CT5311
• CT5306 uses CT5316
• CT5306 uses CT5317
• CT5306 uses

Testing
Test type
• oral exam
• Computer simulation exercise

Grading
Bonus
maximum 1 bonus point for the computer simulation exercise

Materials

obligatory lecturenote(s)/textbook(s):

• Ports en Terminals
• Capacities of Inland Waterways
• Service Systems in Ports and Inland Terminals

Available at BookShop Civiele Techniek.
Foundation engineering and underground construction

ECTS credits: 4
schedule:
MSc-programme, semester 2.2

lecturer
Prof. ir. A.F. van Tol
guest lecturers
contact for students
Ing. H.J. Everts room: 0.10 ext: 85478
appointments
secretariat of the section
Geotechniek room: 0.13 ext: 81880

Summary
The main topics of the course deal with the interaction between soil and structure in tunneling, foundations and deep excavations. The content of the lectures will be practised in a realistic case concerning the design of a building pit and the prediction of the effects on neighbouring structures. It is possible to combine this course with the course "submerged tunnels" (CT5305). In that case the number of ECTS will be 8.

Description
The main topics of the course deal with:

- soil-investigation; design of scope and interpretation
- design of appropriate foundations regarding the characteristics of soil and structure
- the effects of interaction between soil and structure
- the possibilities of improving foundations
- the design of building pits
- shieldtunneling; the analysis of the front stability and prediction of effects on adjacent structures
- the possibilities of improving soil characteristics; grouting
• the design of tension piles
• the design of laterally loaded piles (due to soil deformation or external loads)

**Goal**

The course intends to get the knowledge and the proficiency to identify all relevant aspects concerning the design of buildings pits, tunnels or piled foundations and the interaction between soil and structure.

**Course Type**

- lecture
- instruction
- case study

**Course Relations**

- CT5330 uses CT5331

**Testing**

**Prerequisite**

Attendance of the lectures

**Test type**

- Written presentation
- Oral presentation
- Practice(s)

**Materials**

**syllabus:**

- CT5330 "Foundation Engineering and Underground Construction"
- CT5740 "Trenchless Technology"

Available at BookShop Civiele Techniek.

**obligatory lecture note(s)/textbook(s):**

- Lecture notes

Available at the Blackboard website.
**CT5308**

**Breakwaters and Closure Dams**

ECTS credits: 4  
schedule:  
MSc-programme, semester 1.2

lecturer  
**ir. H.J. Verhagen**

tutor  
**ir. J. Olthof**

contact for students  
**ir. H.J. Verhagen** room: 3.88 ext: 85067

appointments

secretariat of the section  
Waterbouwkunde room: 3.73 ext: 83345

**Summary**

Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons.

**Description**

Overview and history of breakwater and closure dam construction. The general design principles of a breakwater and a closure dam. Determination of boundary conditions for dams and breakwaters, with special attention to the design frequency. Methods to determine the design wave height from wave statistics. Overview of other boundary conditions (geotechnical and hydraulic).

Materials, quarries and rock properties.

Execution (marine or land based equipment) of the works.

Failure mechanisms and (cost) optimisation.

One-week exercise in which a group of two students has to design a breakwater and a closure dam.

**Goal**

After the course, the student has to be able to:

- Determine the type of breakwater required
- Determine the type of closure required
- Determine the boundary conditions (waves, waterlevels, currents)
- Make a preliminary design of a breakwater and a closure dam
- Be able to optimise the design on basis of cost and availability of resources like labour and materials

**CourseType**

Lectures with illustrations (video, numerical examples). Exercise in groups of two students to design a breakwater and a closure dam.

**Course Relations**

- CT5308 uses CT4310
- CT5308 uses CT4320

**Testing**

Test type

Design exercise or oral exam
(Book "Breakwaters and Closedams")

**Grading**

Calculation

One mark, based on Design exercise or on Oral Exam

**Materials**
obligatory lecturenote(s)/textbook(s):

- Book: "Breakwaters and Closedams"
  Available at bookshop and VSSD.

obligatory other materials:

- Handouts and list of videos
  Available at the Blackboard website.

recommended other materials:

- The Closure of tidal Basins (Huis in 't Veld)
  Available at BookShop Civiele Techniek.

- Coastal Engineering Manual (pdf, downloadable)
  Available at the website.

recommended lecturenote(s)/textbook(s):

- Manual on the use of Rock (CUR Publication)
  Available at BookShop Civiele Techniek.
Summary

Fieldwork on location in The Netherlands or abroad. Preparation (30 hours). Execution of measurements at a coast, a river or at a coastal structure (one week). Elaboration of data in a report (50 hours). Option for a morphologic or a construction oriented fieldwork.

Description

For the fieldwork a number of options are possible, which may change on a yearly basis, depending on the availability of appropriate locations for the fieldwork. In the near future the following options are planned:

The **construction oriented fieldwork** will be done in Bulgaria. A quarry will be visited; here the students have to assess several parameters of rock, like the Dn50, density, blockiness, etc. At the coast some profile measurements will be made, sand sample will be taken and the instantaneous wave condition will be observed. At some rock structures pressure fluctuations will be observed due to wave impact.

The **morphologically oriented fieldwork** will be done along the Dutch coast. Measurements will be done on the beach, like profile measurements, sand sampling, sediment transport measurements, etc. The collected data will have to checked to the deep water boundary conditions (waves and currents) which are available via the routine measuring facilities of Rijkswaterstaat (ministry of public works).

Before starting with the actual fieldwork, a measuring plan will have to be drafted. During the measurements the collected data will have to be processed and put down into a measurement protocol. After the fieldwork the data will have to be analysed and conclusions will have to be drawn. The group will have to
make one joint report with the technical data and each student has to make an individual report with other observations.

**Goal**

After finalisation of this fieldwork students have to have insight in how to set up a measuring campaign, how such a campaign will be executed and how it should be reported. The student has to experience that there is a large degree of flexibility to be built into the planning of measurements in nature, because the weather conditions cannot be predicted accurately. The student has to get understanding in the degree of accuracy which can be obtained during measurements in the field. The student has to build up experience in organizing and in the logistics of a measuring campaign.

**Course Type**

Fieldwork

**Course Relations**

- CT5318 uses CT2320
- CT5318 uses CT4300

**Testing**

**Prerequisite**

A mark is only given when the following elements are completed:

- measuring plan
- participation in the fieldwork
- reports of the measurements
- final report

**Test type**

**Grading calculation**

The mark is based on the participation during the fieldwork, the quality of the measurement report and the quality of the final report.

**Materials**

**syllabus:**

- Available at the Blackboard website.

**obligatory lecture note(s)/textbook(s):**

- Bed- bank and shoreprotection (Schiereck)
Available at bookshop and VSSD.

**obligatory other materials:**

- Various handouts, downloadable from Blackboard.

**recommended other materials:**


Available at BookShop Civiele Techniek.
### Marine climate and hydrodynamics

**Aims:** To offer a specific training in marine processes and the basic tools for the design of marine civil engineering structure works.


**Teaching staff:** J.P. Sierra, A. Sánchez-Arcilla and others.

**Teaching and Learning Methods:** Theory and practise and an optional "subject work".

**Assessment:** Exam with practical and theoretical questions. There is also the option that the students develops a course work related to the subject.
### Coastal protection. Hard and soft works  
C.04.176.00  
7  
C

**Aims:** To give the students the necessary knowledge to deal with the design of coastal protection works, including: typical problems in the coastal zone, mechanisms and processes that generate these problems, functional design of solutions to these problems either as a function of their origin or the nature of the zone to act on, impact of the actions to the coast and introduction to the management of the coast.


**Teaching staff:** A. Sánchez-Arcilla, J.A. Jiménez, V. Gracia and C. Mösso.

**Teaching and Learning Methods:** Theoretical and practical lectures. Practical work based on a real problem to be solved during the course by the student.

**Assessment:** The subject will be assessed by a tutored work which will be developed during the course.
**Coastal and estuarine morphodynamics**  
C.04.182.00  4.5  O

**Aims:** To present a multi-scale analysis of coastal driving factors and responses. The emphasis will be in microtidal environment and corresponding processes.

**Description:** Morphodynamics, spatial and time scales. Driving factors. Dynamic of pocket and open beaches. Deltaic coast dynamics. Estuarine coast dynamics. Dune dynamics.

**Teaching staff:** A. Sánchez-Arcilla, J.A. Jiménez and others.

**Teaching and Learning Methods:** Theory and practise and an optional "subject work".

**Assessment:** Course work.
<table>
<thead>
<tr>
<th><strong>Numerical and hydraulic modelling</strong></th>
<th>20057</th>
<th>4.5</th>
<th>C</th>
</tr>
</thead>
</table>

**Aims:** To familiarize the student with state of art numerical and hydraulic models commonly used in coastal oceanography, with emphasis on engineering application.


**Teaching staff:** M. Espino, X. Gironella and A. Sánchez-Arcilla.

**Teaching and Learning Methods:** Theory and practise and an optional "subject work".

**Assessment:** Exam and/or research report
### Impacts, conflicts and risks

**Aims:** To present the coastal zone as a dynamic zone submitted to an increase in pressure of use and, thus, with a high level of risk for the infrastructures/activities that "rigidize" it. To present the main driven factors of this coastal dynamics in terms of the risk that they produce. To present how the risk does develop, how to manage it and its perception by the "agents" that live at and use the coast.


**Teaching staff:** A. Sánchez-Arcilla, J.A. Jiménez and others.

**Teaching and Learning Methods:** Motivation talks whose emphasis is on
- Problem approach
- Some examples to illustrate the dimension of the problem
- Some examples of results to illustrate the tools to solve the problem

**Assessment:** A case study, to the chosen by the student or group of students (maximum 3), to be resolved at conceptual level as follows
- Problem
- Approach
- Solution
With an approximate extension of 15 pages corresponding a workload of approximately 10 hours
<table>
<thead>
<tr>
<th>Specialization project (minor thesis)</th>
<th>C.04.183.00</th>
<th>11.5</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aims:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Description:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Teaching staff:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Teaching and Learning Methods:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Assessment:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Southampton

CENV6084 Maritime and Coastal Engineering

Aims

The main aim of this module is to introduce theory and practical applications relevant to engineering in a marine environment.

Teaching and Learning Methods

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hours</td>
<td>40</td>
</tr>
<tr>
<td>Private study hours</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
</tr>
</tbody>
</table>

TEACHING ACTIVITY:
lectures and seminars.

LEARNING ACTIVITY:
class discussion, a roleplay (developer vs environmentalist), group work and private study

Assessment

<table>
<thead>
<tr>
<th>Details</th>
<th>Weight</th>
<th>Issue wk.</th>
<th>Deadline wk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Project</td>
<td>28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Oral Presentation</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Written feedback will be given within 3 weeks of the project work being handed in. The group oral presentation will receive peer and tutor review.

Learning Outcomes

*Having successfully completed the module, you should be able to demonstrate knowledge and understanding of the following:*

1. Wave and tidal theory
2. Marine construction
3. Environmental aspects of the land-water interface

*Intellectual skills. Having successfully completed the module you should be able to:*

1. Analyse marine data
2. Critically evaluate the results of calculations in view of practical consideration
3. Understand the importance of the environment in marine engineering and development

*Practical skills. Having successfully completed the module you should be able to:*

*Key skills*

• Argue a case
• Discussion
• Group work
• Oral presentation

Topics
Tidal Theory
Hydrographic Surveying
Maintenance Dredging
Wave Theories
Wave Refraction
Wave Diffraction
Wave Reflection
Breakwaters
Coastal Defence
Marine Construction
Long Sea Outfalls
Estuaries
Sediment transport
CENV6087 Environmental Audit and Risk Assessment

Aims
Environmental safety and environmental planning are essential pre-requisites to project planning and necessary to comply with current legislation covering risk and legal duty of care to employees. They encompass knowledge of environmental risk management techniques and environmental audits. Through this module, you should have the confidence and skills to carry out a full risk assessment.

Teaching and Learning Methods

<table>
<thead>
<tr>
<th>Contact hours</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private study hours</td>
<td>120</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>150</strong></td>
</tr>
</tbody>
</table>

Teaching methods will include:

- Lectures
- Site visits
- Project work

Learning methods will include:

- Listen to lectures
- Group interaction
- Project work
- Developing and writing an Environmental Impact Statement

Assessment

<table>
<thead>
<tr>
<th>Details</th>
<th>Weight</th>
<th>Issue wk.</th>
<th>Deadline wk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA Report</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The EIA report is a full environmental impact statement on a large engineering project. It is carried out in groups of 3-4.

40% of the marks are allocated for the overall quality of the project, 60% for individual effort.

Students will be given written feedback on their report within 4 weeks of handing in their work.

Learning Outcomes

*Having successfully completed the module, you should be able to demonstrate knowledge and understanding of the following:*

1. The areas of risk, such as sounds, sight, air quality and hydrology
2. The principles of environmental risk management
3. How to scope, audit and manage risk
4. The adopted methods of risk assessment
5. The current legislation covering risk and the legal duty of care for all employees

**Intellectual skills. Having successfully completed the module you should be able to:**

1. Analyse the basic tools available for risk assessment
2. Appraise, evaluate and summarize the basic data
3. Critically evaluate the quality of information

**Practical skills. Having successfully completed the module you should be able to:**

1.

**Key skills**

- Critical Analysis
- Decision Making
- Problem analysis and problem solving
- Self management (e.g. time management)

**Topics**

Environmental Impact Assessment Issues:

- the law
- public expectations
- identifying ecological issues
- environmental issues
- sound
- visual
- hydrological
- air quality

Generally adopted methods:

- Scoping: EIA construction Phase, Operation Phase, Public Inquiries, Planning to overcome restrictive issues

- Conducting an EIA (practical exercise)

- Risk Assessment: principles of risk assessment, the law and responsibilities, audit of risk, managing risk
SOES 6011: Applied Sediment Dynamics

Coordinator  Professor CL Amos  Other teaching staff

Semester  1  Timetable slot  To be advised

Credit points  15  Level  4

Prerequisites
None. Restricted to Undergraduate and Postgraduate Masters students. [Not to be taken with SOES 3014 (OA320)]

Synopsis
This unit describes and extends upon fundamental principles of the movement of non-cohesive and cohesive sediments under waves and currents. These concepts are considered within different sedimentary environments. Sediment transport determinations are described, under unidirectional currents, waves and wave/current interaction. A series of applied studies are described, including: modelling of non-cohesive/cohesive sediment transport; sea bed scouring; beach replenishment; marine aggregates and sea bed mobility.

Aims
- To develop the basic concepts of sediment movement into applied studies within coastal and inner continental shelf waters.

Objectives
At the end of the unit, you should:

1. be conversant with the basic concepts of sediment movement, within the context of applied studies on coastal and inner continental shelf waters.

Key Skills Acquired
- Problem Analysis
- Written Communication
- Ability to learn
- Critical Analysis

Learning & Teaching
- Formal Lectures
- Laboratory Classes
- Fieldcourse: ½ day

Assessment
- Written examination 75%
**GEOG6012: GIS for Coastal Engineers**

**Introduction**

The course aims to give an understanding of the theory behind Geographic Information Systems (GIS) and the application of GIS to environmental and coastal engineering. This is delivered through a series of lectures and practicals, together with a number of lectures given by guest lecturers working in the coastal and marine industries.

This is an introductory course, aimed at those with little knowledge or experience of GIS, therefore there are no pre-requisites for the unit. Attendance at all lectures and practical sessions is expected from those who intend to be assessed for the unit.

The lectures supply most of the formal theory of GIS, while the practicals aim to put these theories into practice using environmental and coastal data sets and GIS software that is widely used by industry, local government and government agencies involved in environmental management. The guest lectures aim to provide context by demonstrating the use of GIS in the coastal and marine industry.

The supervised practical sessions will be computer based, using the ArcView 9 GIS software. They will concentrate on the development of analytical and mapping skills and their application to environmental and coastal projects.

**Assessment:**

GIS Project: 100%

1. Assessment for this unit will consist of a GIS project. This will involve the application of the skills you have learned to a real coastal engineering project.
City University List of Courses and Syllabi
(All Courses 7.5 ECTS)

Maritime Operations.       Code EPM 782

Educational Aims:
To provide an overview of operations in the various sectors of the coastal and marine industries; to provide an awareness of the need to identify and manage risks as they affect organisations, including financial and other exposures, which occur at various stages of operations. To provide an understanding of the contractual elements that may be used to reduce risks.

Content:
Ocean bed exploration such as the following,
   - Fossil fuel exploration, production and maintenance operations,
   - Offshore mining and sea bed litigation,
   - Offshore alternative energy operations.
Extent and categories of contractual and financial risks. The management of risk. Organisations liability to reduce risk and its impact. Control systems to minimise the effects of risk.

Maritime Technology.       Code EPM 783

Educational Aims:
To describe the principles, practice and management of present and future technologies for coastal and marine applications. To provide a common technical and operational foundation in communications, power generation, propulsion, sea keeping, structures, ship systems and associated risks.

Content:
Maritime Law and Insurance. Code EPM 784

Educational Aims:
To integrate legal and insurance considerations into the management of coastal and marine operations.

Content:

Finance, Accounting and Economics. Code EPM 785

Educational Aims:
To provide a knowledge and understanding of management accounting as a medium used for evaluating the performance of an organisation and for determining future operational strategies.

Content:

Management Studies-Human Resources, Crisis and Risk. Code EPM 786

Educational Aims:
To provide a knowledge and understanding of the basic principles of the management of organisations whose activities are concerned with coastal and marine operations.

Content:
Appendix 3: CV’s of core teaching staff
Appendix 3: CV’s of core teaching staff Delft
FAMILY NAME: Stive

FIRST NAMES: Marcel Jacobus F.

DATE OF BIRTH: February 25, 1951

NATIONALITY: Dutch

MARITAL STATUS: Married, three children

ADDRESS: Dotterbloemeiland 2
2285 JX Rijswijk

EDUCATION:
(only higher vocational or academic)
- PhD Civil Engineering, Delft University of Technology
- MSc Civil Engineering, Delft University of Technology

LANGUAGE SKILLS:
(specify native tongue and then apply a scale of 1 (excellent) to 5 (poor) to other languages)

<table>
<thead>
<tr>
<th>Language</th>
<th>Spoken</th>
<th>Written</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>German</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>French</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Spanish</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Catalan</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

PRESENT POSITION
Professor of Coastal Engineering, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Section of Hydraulic Engineering

YEARS WITH THE INSTITUTE: 1994 - present

KEY QUALIFICATIONS:
Professor Stive has more than 25 years experience in research and projects in the fields of hydraulic engineering, coastal morphodynamics, coastal biogeomorphology and coastal and estuarine management, as team member, as team leader and as advisor. His record involves coasts, estuaries, harbours and offshore projects in several countries in Europe, Asia, Africa and the Americas, using fieldwork and experimental physical and mathematical physical models. He was involved in several projects sponsored by the science and technology programmes of the EU, of one of which he was overall co-ordinator. Moreover, he spent two years as visiting professor on the Universitat Politècnica de Catalunya, and was part-time professor Coastal Morphodynamics at Delft University of Technology from 1994 to 2000. In 2001 he accepted the fulltime chair of Coastal Engineering at the Faculty of Civil Engineering and Geosciences of Delft University of Technology. His current long-term responsibilities involve the development of a Delft University of Technology research centre Water and the scientific co-ordination of the theme Coasts and Rivers in the Delft Cluster programme. He is a member of the National Advisory Committee on Water Defence, of the Board of Trustees of the Netherlands Centre for Coastal Research and of the Netherlands Centre for River Engineering. He has written many publications on a variety of topics, ranging from geology to hydraulic engineering and coastal zone management.

PROFESSIONAL EXPERIENCE RECORD:
1994-2001 Senior Specialist Marine and Coastal Management, DELFT HYDRAULICS (0.70 FTE);
1994-2001 Professor Coastal Morphodynamics, Netherlands Centre for Coastal Research, Faculty of Civil Engineering and Geosciences, Hydrotechnical Section, Delft University of Technology (0.3 FTE
1992-1993 Visiting Professor, Universitat Politècnica de Catalunya, Departament d’Enginyeria Hidràulica, Maritima i Ambiental, Laboratori d’Enginyeria Marítima
1990-1991 Deputy Director, Division Harbours, Coasts and Offshore Technology, DELFT HYDRAULICS
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983-1989</td>
<td>Senior Research Engineer, DELFT HYDRAULICS</td>
</tr>
<tr>
<td>1977-1983</td>
<td>Project &amp; Research Engineer, DELFT HYDRAULICS</td>
</tr>
</tbody>
</table>

**Membership of Professional Bodies**
- Member Royal Dutch Institution of Engineers (KIVI)
- Member European Union of Conservation of Coasts (EUCC)
- International Affiliate Member American Society of Civil Engineers (ASCE)

**Other:**
- **Lectures**
  - Teaching activities for 2002/2003:
    - fifth-year graduate course: Coastal inlet and tidal basins (DUT)
    - fourth-year graduate course: Introduction Coastal Engineering (DUT)
    - fourth-year graduate course: Physics of Coastal Systems (UU)
    - second-year course: Introduction Hydraulic Engineering (DUT)

**Publications**

*Principal (journal) publications (since 2003):*

2004  

2004  

2004  

2004  

2003  

2003  

2003  

2003  

2003  

2003  

2003  

2003  

2003  
CURRICULUM VITAE

Name : VRIJLING, Johannes, Kornelis

Year of birth : 1947

Nationality : Dutch

Education : MSc. C.E. Delft Univ.of Technology
MSc. Economics Erasmus Univ.R'dam

Affiliations : Royal Institute of Engineers

Languages : Dutch, English, French, German

Overseas Exper. : Saudi Arabia, Canada, Bangladesh, India

Employer : Delft University of Technology

Position : Professor of Hydraulic Engineering and Probabilistic
Design at Delft University of Technology
Advisor of the Construction Division Ministry of
Transport and Public Works

Overview

Vrijling finished his master’s study at Delft University of Technology in 1974 with a thesis on prefabricated office buildings. In 1980 he received his masters degree in Economics at the Erasmus University.

After a short period at the engineering office of the Adriaan Volker Group he was sent to the Jubail harbour project as site-engineer, supervising the construction of ancillary structures and the opening of a quarry. In 1976 he was seconded to the Easternschelde storm surge barrier project. In this project Mr. Vrijling developed the probabilistic approach to the design of the barrier. During the project he moved through the ranks to become the member of the project management team responsible for the research. After the completion of the barrier in 1986 he became deputy-head of the Hydraulic engineering branch of the Civil Engineering Division of Rijkswaterstaat. Since 1989 he is responsible for the research and computer activities of the Civil Engineering Division.

In 1989 he became part time professor of Probabilistic Design in Hydraulic Engineering in Delft. Since 1995 he is full time professor of Hydraulic Engineering and Probabilistic Design

Research

Prof. Vrijling’s research is directed at the decision-making in civil engineering design. His studies encompass, engineering design of fixed and flexible
structures, statistical analysis of hydraulic boundary conditions, the analysis of the consequences of failure and decision theory.

**Administrative posts**

Chairman of the Hydraulic en Geotechnical Engineering Group of the Faculty of Civil Engineering and Geoscience

Vice-dean of the Faculty of Civil Engineering and Geoscience

Member of the Dutch national Committee on Flood Defence

**Selected publications**


Curriculum Vitae Henk Jan Verhagen

Associate professor in Hydraulic Engineering
Delft University of Technology, the Netherlands

Name: Verhagen, Hendrik Jan
Date of birth: 12 March 1952
Nationality: Dutch

Education:
- Diploma civil engineering (M.Sc. in coastal engineering) Delft University of Technology in 1978.

Main discipline: Coastal engineering, coastal zone management

Present position:
- Associated professor in hydraulic engineering at the Delft University of Technology, Department of Hydraulic and Geotechnical Engineering, Delft, The Netherlands.

Specialisation:
- Coastal protection works
- Coastal policy problems
- Policy analysis techniques
- Co-operation between governmental agencies

Years with the institute: Since 2000

Professional affiliations:
- Dutch representative in MarCom of PIANC.
- Member of working group “Technology” of the Technical Advisory Committee on Waterdefences (TAW) of the Dutch minister of Public Works.
- Member of the Commission on the Environmental Impact Assessments of the Netherlands Government.

Employment Record:

2000 to date: Associate professor in Hydraulic Engineering, Delft University of Technology, The Netherlands

Professional Experience Record

Delft University of Technology
Responsibilities:
As Associate Professor in Hydraulic Engineering in charge of the subjects "Bank, Bed and Shoreline protection", "Breakwaters and Closure works", "Fieldwork Hydraulic Engineering" and "Integrated Coastal Zone Management". Supervision and guiding M.Sc. and Ph.D.-students in their assignments and (experimental) research work in coastal protection works, revetments and breakwaters. Courses in the framework of the permanent education programme of Delft University. Research related the topic of coastal structures.

Other teaching:
Teaching assignments in Indonesia and Vietnam for the Ministry of Public Works, focusing on the development of coastal engineering. Teaching assignments in Vietnam and Bangladesh in the framework of development cooperation with universities in those countries. Development of a Coastal Engineering curriculum for the Hanoi Water Resources University, including training of staff.

Expert opinion/supervision:
Advice to the Royal Society for the Protection of Birds regarding the Environmental Statement for the Bayside Container Terminal, Harwich, UK. Advice to the Port of
London Authority regarding the Environmental Statement for the London Gateway Container Terminal Projects (focus on sedimentation processes). Advice to the Government of Belgium on the improvement of dikes along the Scheldt river; advise regarding the EIA-statement on the container terminal at Vlissingen. On request of the Netherlands Ministry of Public Works production of a coastal protection manual for the coast of Tamil Nadu (India). Review of a computer package developed for Lifecycle analysis of coastal protection works. Development in the framework of Delft Cluster a Knowledge Information System for the Hydraulic Engineering Community. In cooperation with the Ministry of Public Works and IHE-Delft the development of the computer package Cress for design of coastal and river engineering structures.

International Institute for Infrastructural, Hydraulic and Environmental Engineering (presently UNESCO-IHE institute for water education)

Responsibilities:
As Associate Professor in Coastal Engineering in charge of the branch "Coastal, Estuarine and Port engineering" of the International Course in Hydraulic engineering. Organisation of the yearly Senior Advanced Course on Coastal Zone Management, a short course developed for experienced coastal managers, focusing on policy problems. Supervising the M.Sc. work in Coastal, Estuarine and Port engineering.

Other teaching:
Teaching assignments in Indonesia, Colombia and Malaysia for the Ministry of Public Works, focusing on the development of coastal engineering groupwork, as well as teaching courses in Coastal Zone Management. Special courses in CZM for various groups, given in the Netherlands (e.g. from Taiwan, Venezuela, etc.). Refresher courses in Brazil and the Philippines.

Expert opinion/supervision:
Providing advisory services to the design of a closure dam near Batam-island, Indonesia, as part of a container port under construction. On behalf of the Dutch Government supervision of a study, conducted by a consultant on new coastal protection methods in S.W.-Netherlands. Giving an expert-opinion on various coastal projects in the Netherlands on request of the Dutch ministry of Public Works (Long Groyne project Eijerland, perched beaches in Zeeuwsch-Vlaanderen). Providing advisory services to UNDP regarding the capacity building for institutional improvements in Central Asia in order to ameliorate the situation regarding the Aral Sea.

Ministry of Public Works
Several functions in consultancy departments. Special attention to the integration of disciplines and the co-operation of several governmental agencies. Development of probabilistic design methods and risk analysis in the field of hydraulic engineering. The development of environmentally friendly shoreline protection methods. Coordination of the Sea defence and river dike works in the Netherlands; coastal protections, dunes.

Selection of projects:
Assessment of safety of the dike through the build-up area of the town of Harlingen. Development and application of a method to determine the required dike-height along tidal rivers, using probabilistic techniques. Determination of a formalised method to determine the present and future coastline. Development of several methods required for the implementation of the Law on Seadefence and the National Coastal Policy in the Netherlands.
Pieter van Gelder
CV

Short Summary: Dr.ir. Pieter van Gelder is full-time associate professor (universitair hoofddocent) of probabilistic methods in civil engineering at Delft University of Technology. He has been involved in research and education on safety and reliability for over 10 years. His research interest is in risk-based hydraulic structural design, and extreme value statistics for hydraulic loads determination. Dr. Van Gelder has worked for the Ministry of Water Management on hydraulic engineering projects where high degrees of reliability were demanded and where statistical information was scarce. Van Gelder is also consultant for Nedstat BV on statistical analysis, and part-time lecturer at IHE, and PAO. He has authored and co-authored over 100 conference - and journal papers, and has supervised over 30 MSc-students from the Faculty of Civil Engineering. He is currently management board member of ESRA (European Safety and Reliability Association), and project leader in several international research projects. Van Gelder is furthermore member in a number of Technical Programme Boards and Scientific Committees of annual international conferences and workshops. Van Gelder also holds visiting professorships at the Institute of Risk Research (IRR) of the Faculty of Civil Engineering of the University of Waterloo, Canada, and at the Centre for Ships and Ocean Structures of the Norwegian University of Science and Technology, Trondheim, Norway.

Research

The principal objects of Van Gelder's research are the developments of reliability methods for the optimal design of different types of structures. Design is considered in a wide sense, which includes design of the structure's dimensions as well as the design of the maintenance system. Not only attention is paid to a structure's ultimate limit state, but also to its various serviceability limit states before collapse through its lifetime. Reliability formulations also include a consistent treatment of cost and safety requirements. The research is concerned with aspects of load definition, its impact on the reliability-based decisions and the derivation of load factors for design. Mathematical formulation of the design optimization problem by considering the minimization of lifecycle costs of different structures under different types of uncertainties and failure mechanisms and the influence of nontechnical aspects on the optimization process amongst others are objects of research. The research is aimed at the engineering profession. The research is analytical and relies heavily on theoretical work. Identified key processes are modelled in a statistical physics-based framework, first analytically and then numerically or by simulation. Some research versions of models have been developed into operational models. Stochastic optimization models are implemented into decision support systems. Keywords of Van Gelder's research include: risk analysis, uncertainty analysis, extreme events, engineering probability, decision making, and Bayesian inference. There are 4 research topics identified:

Research Interests

- Risk-based optimal design.
- Acceptable risks assessment.
- Statistical methods for modelling environmental variables.
• Bayesian analysis and extreme events.

Van Gelder is currently task leader of 'Reliability assessments of flood defences' in the EU-project FLOODSITE and of 'Natural Hazards Assessments' in the EU-project SAFERELNET (Safety and Reliability of Industrial Products, Systems and Structures (2001-2004)), the NWO-project STATFLOOD (Statistical properties of flood runoff of North Euroasia rivers under conditions of climate change (2002-2005)), China II, the cooperation programme (1999-2003) with Hohai University (Nanjing) sponsored by the Netherlands Embassy in China and Delft Cluster. Furthermore Van Gelder is the Dutch project leader of the SANPAD project NEMISA (New Models in Survival Analysis (1999-2003)), the NWO project CASPIANSEA (Risk of extreme hydrometeorological events in low-lying areas of the North and the Caspian seas (2002-2005)), the DelftCluster (1999-2004) projects DC2.01.02 FLOOD MITIGATION DECISION SUPPORT SYSTEMS and DC2.03.02 GEVOLGEN VAN OVERSTROMINGEN, and finally the VROM project P3009 'Framework for judging risk’ (2004-2008).

Selection of Publications
Available at the Homepage:
www.hydraulicengineering.tudelft.nl/public/gelder/homepg.htm

Teaching

Teaching Areas
• Probabilistic design
• Probabilistic methods in hydraulic engineering

Teaching Experience

1994- present UNIVERSITY OF DELFT
Tutorial classes and examination of
• fourth year Probabilistic design,
• fifth year Probabilistic methods in hydraulic engineering,

2003 IVW
Course on Inspection and Reliability Modelling for Inspectors of the Ministry of Water

2000 - present IHE
Presentation of a course of 16 hours on Probabilistic methods in hydraulic engineering for last-year students in Hydraulic Engineering

1997 POLISH MINISTRY OF WATER MANAGEMENT
A one-week course on river inundations presented by a team of Dutch engineers (sponsored by Arcadis and Dutch Ministry of Water Management)

1996 UNIVERSITY OF BUCHAREST
Presented a course of 18 hours on reliability engineering to final year Civil Engineering students in French language (sponsored by the Romanian Ministry of Education)

1993 RESEARCH INSTITUTES AND UNIVERSITIES IN SOUTH AFRICA
Lecturer in risk assessment and probabilistic design of flood defences at a series of visits to research institutes and universities throughout South Africa to introduce civil engineers to latest technologies in the Netherlands (sponsored by the Dutch Ministry of Water Management).
Appendix 3

CV
Jan van de Graaff

Name: Jan van de Graaff
Date of Birth: September 24th, 1944
Profession: Senior Scientific Officer Coastal Engineering, Delft University of Technology
Years with Firm: Over 25 years
Nationality: Dutch

Key Qualifications:
Coastal Engineering, Coastal Morphology; Dune Erosion; Coastal Protection.
Various research projects sponsored by European Union.
Involved in many coastal protection and coastal morphology projects.

Education and Memberships:
1969: MSc. Civil Engineering, Delft University of Technology.
1988: PhD. Delft University of Technology; The Netherlands.
Member Program Committee Netherlands Center of Coastal Research.
Member Technical Committee on Sea Defenses (2 Working groups).
Member Advisory Board Elsevier's 'Coastal Engineering'.

Experience Record:
Various projects
Since 1975: Delft University of Technology.
Appendix 3:  CV’s of core teaching staff Trondheim

Key academic personnel from Department of Civil and Transport Engineering in the International Master program in

Coastal and Marine Civil Engineering

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology

Professor  Eivind Bratteland
Professor  Sveinung Løset
Associate Professor Øivind Arntsen
Professor  Geir Moe
Professor  Steinar Nordal
Professor  Tore Sager
Adjunct Professor  Svein Fjeld
Adjunct Professor  Ove Tobias Gudmestad
Curriculum Vitae

Name: Eivind Bratteland  
Born: September 7th 1940  
Nationality: Norwegian  
Present position: Professor, Norwegian University of Science and Technology  
Department of Civil and Transport Engineering  
Degrees: Sivilingeniør, MSc, NTH, 1964  
Languages: Norwegian (mother tongue), English (oral and writing), German (working knowledge)  

Work Experience:  
1971 to date: Norwegian University of Science and Technology (NTNU)  
Lecturing, research and projects on planning, design and operation of ports, terminals and coastal works, including:  
- hydraulics in coastal and port areas, erosion and littoral drift  
- loads on port and coastal structures, stability of breakwaters  
- coastal zone management  
- transportation analysis and transport modes, cargo and cargo handling  
- port planning design and engineering, port operation and maintenance  
- international education and research  

Dean, Faculty of Civil and Environmental Engineering 1994 – 1999.  
Invited guest lecturer to Japan, China, Sri Lanka and Costa Rica. Lecturing at a number of courses given by the Norwegian Society of Chartered Engineers.  

1986: 6 months sabbatical leave at The No 4 Survey and Design Institute for Harbour Engineering, Guangzhou, China. Working on developments and planning of new port facilities on south-eastern coast of China.  
1977 – 1978: 12 month sabbatical leave, partly working at the Institute of Transport Economics, Oslo. Working on transport analysis, port and terminal planning and design, and related cargo and cargo handling.

1968 – 1970: River and Harbour Laboratory, SINTEF. Laboratory work on wave action and forces related to ports, coastal and offshore structures, including breakwater stability. Two international projects in India and the Philippines.


Membership in academic and professional committees:
Member of Management Committee in European Civil Engineering Education and Training. (EUCEET) Chairman for Working Group.

Present doctoral students supervised:
PhD student on Behaviour of stabilized contaminated sediments in confined disposal facilities (CDFs).

Fields of interests and present research activities:
- Education in port and coastal engineering on a post-graduate international level.
- Development of an MSc international degree programme in Coastal and Marine Civil Engineering.
- International network and cooperation in research and education.
- Cleaning up of contaminated sediments in ports and at the coast. Dredging and disposal of the dredged materials.
- Use of laboratories both in research and as an important part of the educational activities.
- Ports as a vital link in the transportation chain.
- Challenges for future development, exploitation and use of the coastal zone.

Selected recent publications:
3. Michael Briggs, Leon E. Borgman, Eivind Bratteland
CURRICULUM VITAE

PERSONAL:
Name:    Løset, Sveinung
Born:    1956
Nationality:    Norwegian
Present position:    Professor in Arctic Marine Engineering, Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU)
Professor II at the University Centre in Svalbard (UNIS)
Civil Status:    Married with Berit Walslag; children: Mari (b. 1984) and Hilde (b. 1987)
Address:    Norwegian University of Science and Technology,
Department of Civil and Transport Engineering,
7491 Trondheim, Norway
Teleph./fax:    +47-73594640/+47-73597021
E-mail:    Sveinung.Loset@ntnu.no
http://www.bygg.ntnu.no/~sveinulo/

EDUCATION:
1990-93: Dr.ing. in marine technology, The Norwegian Institute of Technology, Trondheim.
1978-79: Pedagogic Training for Civil Engineers (PUFS), The Norwegian Institute of Technology.
1973-76: Volda gymnas.

EMPLOYMENT:
May 04-present: Vice-dean, Faculty of Engineering Science and Technology, NTNU.
Jan. 02-present: Professor, Department of Civil and Transport Engineering, NTNU.
Sep. 02-May 04: Head of Study Program “I&IKT”, NTNU
Jan. 02-Sep. 02: Head of Study Program “Civil and Environmental Engineering”, NTNU.
Jan. 99-Dec. 01: Vice-dean, Faculty of Civil and Environmental Engineering, NTNU.
Jan. 97-present: Professor II at UNIS.
Mar. 95-Dec. 02: Professor, Department of Structural Engineering, NTNU.
June 94-Feb. 95: Associate Professor, Department of Structural Engineering, NTH.
Sep. 93-May 94: Research Manager, SINTEF Norwegian Hydrotechnical Laboratory.
Sep. 90-Sep. 93: Dr. student, Department of Structural Engineering, NTH.
1986-Sep. 90: Research Manager, SINTEF Norwegian Hydrotechnical Laboratory.
Jan.-May 1981: Assistant Professor, Div. of Physics, The Norwegian Institute of Technology.
June-Aug. 1979: Student scholarship, The Israely Institute of Technology, Haifa, Israel.

PROFESSIONAL SOCIETIES AND OTHER ASSIGNMENTS:
Professional membership:
Norwegian Academy of Technological Sciences
European Geophysical Society/ Norwegian Geophysical Association
International Association for Hydraulic Research (IAHR)
Norwegian Society of Chartered Engineers (NIF).
Assignments:
Member of ISO WG8 Arctic Offshore Structures Standard, Technical Panel Leader
Member of the Norwegian Council for Higher Education (UHR), Section Technology (NRT) (2003-07)
President of POAC (Port and Ocean Engineering under Arctic Conditions) (2002-03)
International Ship and Offshore Structures Congress (1996-97), Norway’s member of the Specialist Committee on Ice-Structure Interaction
Member of the Norwegian MAST Reference Group (1995-97)
International Association for Hydraulic Research (IAHR), Norway's Committee
Member of the IAHR Committee on Ice Research and Engineering (1992-96)
Norway's Committee Member of the POAC International Committee (1993-
Appendix 3

Regularly referee of international journals, and chairman on international conferences.

KEY QUALIFICATIONS:
Scientific: Knowledge and direct experience of ice engineering from more than 15 years (1986-03) of field/laboratory investigations and numerical modelling:
  o  Ice physics and mechanics
  o  Ice loads on offshore and coastal structures (field/laboratory investigations, computations)
  o  Sea ice dynamics and rheology (field/laboratory investigations, computations)
  o  Statistics on sea ice and icebergs, Barents Sea
  o  Planning of oil/gas terminals in icy waters
  o  Thermodynamics of icebergs and sea ice ridges
  o  Cold climate engineering
  o  Oil in broken ice; behaviour, spreading and response
  o  Friction of solid materials on snow and ice
These items involve erudition on ice mechanics, ice physics and dynamics, structural engineering, statistical analysis as well as application of remote sensing techniques. Applied physics (with emphasis on dynamics, thermodynamics and numerical modelling) has been the key discipline in most of my practice.

Substantial collaboration with St. Petersburg State Technical University, Russia (1995-).
Extended contact with Helsinki University of Technology and VTT, Finland (1995-).
Extended contact with Hamburgshe Schiffbau-Versuchsanstalt, Germany (1988-).
Chairman of 12th International IAHR Ice Symposium, Trondheim, 1994.

Administr.: Practice from administration at NTNU and SINTEF:
Vice-dean, Faculty of Engineering Science and Technology, NTNU (May 04-).
Head of study programme I&IKT, NTNU (Sep. 02-June 04)
Head of study programme Civil and Environmental Engineering, NTNU (Jan.02-Sep.02)
Vice-dean, Faculty of Civil and Environmental Engineering, NTNU (1999-01).

PUBLICATIONS:
  • 12 books and compendia
  • 21 international refereed journal papers
  • 75 refereed international conference papers
  • 26 conference papers (selected)
  • 54 technical reports (selected)
  • 3 approved patents
CURRICULUM VITAE

Name: Øivind Asgeir Arntsen
Born: December 9th, 1952
Nationality: Norwegian

Present position: Associate Professor in Marine Civil Engineering
Department of Civil and Transport Engineering
Norwegian University of Science and Technology (NTNU).

Address: Høgskoleringen 7a
NO-7491 Trondheim, Norway,
Phone: + 47 73 59 46 25
fax: + 47 73 59 70 21
E-mail: oivind.arntsen@bygg.ntnu.no

Degrees:
1990 Dr.ing. (Ph.D.) degree in Technical Oceanography, The Division of Structural Engineering, The Norwegian Institute of Technology.
1979 Cand.real. (M.Sc.) degree. The Department of Mechanics, University of Oslo.
1976 Cand.mag. (B.Sc) degree. The Faculty of Mathematics and Natural Sciences, University of Oslo.
1972 Examen artium, (Norwegian highschool) reallinjen (mathematics and natural sciences).

Membership in academic and professional committees:
Norwegian Society of Ocean Research.
Norwegian Society of Geophysical Research.
Norwegian Society of Chartered Engineers (NIF).
Member of the Norwegian MAST (Marine Science and Technology (EC-research program)) reference group (1992-1995).
European Geophysical Society (EGS).
International Association for Hydraulic Research (IAHR), Maritime Section.

Present doctoral students supervised:
1998 – Walman Hutahaean. Ocean currents, internal waves and the vertical mixing of the ocean. (Project coordinator and co-supervisor).

Past doctoral students supervised:
1997-2000 Svein Helge Gjøsund. Kinematics in Regular and Irregular Waves based on a Lagrangian Formulation. (co-supervisor)
1997-2000 Stig Magnar Løvås. Hydrodynamic conditions in kelp forests - wave damping - beach erosion. (Project coordinator and co-supervisor)

Appendix 3
Appendix 3


**Peer-reviewed journal papers:**

**International conference proceedings 2000-2005:**
CURRICULUM VITAE

Name: Moe, Geir
Nationality: Norwegian
Date of birth: August 29, 1938

Present position: Professor, Marine technology, Faculty of Civil Engineering Norwegian University of Science and Technology (NTNU)

Education: 1963 'Sivilingeniør', The Norwegian Institute of Technology, (now NTNU), Trondheim, Norway
1975 Doctor of Science (Sc.D), MIT, Cambridge, Mass, USA

Employment history: 1963 - 65 The Norwegian Institute of Technology, Trondheim, Norway
1966 - 68 The Boeing Co, Seattle, Washington, USA
1968 - 72 Det norske Veritas, Oslo, Norway
1975 - 76 "Overingeniør", The Norwegian Institute of Technology, Trondheim, Norway
1976 - 77 SINTEF, Trondheim, Norway
1977 - 80 "Dosent" (Assoc prof), The Norwegian Institute of Technology, Trondheim, Norway
1980 - Professor, The Norwegian Institute of Technology (NTH), Trondheim, Norway (NTNU)
1985 - 86 Visiting Professor with Conoco, (PES), Houston, Texas
1999 Visiting professor, MIT (6 months)
2000 Visiting professor, Texas A&M (6 months)

Membership in accademic and professional committees:
International advisory board of OMAE-2002, OTRC
International Committee, ISOPE Technical Program committee (several years), Steering board for the SUP 'Computational Science and Engineering', Steering board for the SUP 'Wind Energy', Several Doctoral committees, head 'Norsk forening for vindteknikk' 2005-present.

Board of Directors: Chairman Norwegian Hydrotechnical Laboratories 1995
University of Trondheim (UNIT) Jan 1990 - Dec 1992
Vice Dean Civil and Environmental Engineering, 1989 and 1996-98
Head Department of Structural Engineering, 1997-98

**Professional Interests:** Hydrodynamics (Experiments and numeric models)
   Water waves
   Wave and current forces
   Hydroelastic problems, notably: Vortex Induced motions
   Wind engineering and turbulence
   Structural dynamics, notably random vibrations
   Stochastic processes and extremes

**Recent Research**
1. Vertical resonant vibrations of tension leg platforms

**Interests/Projects:**
2. Wave forces and hydrodynamic damping of offshore structures
3. Vibrations of tubular trusses in wind
4. Flow-induced vibrations of structures in water or wind
5. Numerical analysis of separated flows in water and air
6. Kinematics of irregular water waves

**Doctoral supervision:** Supervised 17 doctoral students at NTH/NTNU

**Publications:**
Publications list with 120 entries. Last 10 years: 7 articles in scientific journals and 21 papers in refereed proceedings from conferences.
CURRICULUM VITAE

NAME:       NORDAL, Steinar
BORN:       March 11, 1954
NATIONALITY: Norwegian

PRESENT POS: Professor, Department of Civil and Transport Engineering,
             Geotechnical Division,
             Norwegian University of Science and Technology (NTNU)

DEGREES:    1983 Dr.ing. (PhD), NTH
             1977 Sivilingeniør (MSc), NTH

WORK EXP.:  1987 -             Professor, Geotechnical Eng. NTH / NTN
             1981 – 1983 University Scholar, NTH
             1980 – 1981 Research Engineer, SINTEF
             1979 – 1980 Visiting Professor, University of Colorado, USA
             1984 – 1987 Associate Professor, Geotechnical Eng. NTH
             1983 – 1984 Assistant Professor, Geotechnical Eng. NTH
             1981 – 1983 University Scholar, NTH
             1979 – 1980 Research Engineer, SINTEF

PRESENT ADM. POSITIONS:
Member of the board of the Faculty of Engineering Science and Technology at NTNU from 2002
Member of the board of UNIS (University Centre at Spitsbergen), from 1999
Observer in the board of the Norwegian Geotechnical Institute, from 1997
Deputy member of the board of the Faculty of Architecture and Fine Art from 2002
Member of the board of the International Centre for Geohazards (ICG) from 2003

PUBLICATIONS SINCE 2002:
NUMGE 2002
slopes, cuts and embankments. May 2003 in Stjørdal.


SOME CONSULTING AND RESEARCH PROJECTS SINCE 2002:

2002 The Leistad Landslide, Cause of failure, for the National Public Roads of Norway.


2002- NFR-CoE – “International Centre for Geohazards” - with NGI, Research Coordinator for NTNU and project leader for project 11: MSc and PhD studies in geohazards at UiO and NTNU.

2005 Busan fixed link project, South Korea, evaluation of creep settlements for submerged tunnel.

INVITED OPPONENT FOR Dr.ing./PhD. CANDIDATES (from 2002):

- Liming Li, (2002), NTNU: “Particle Scale Reservoir Mechanics”
- Jostein Aksnes (2002), NTNU: “A Study of Load Responses Towards the Pavement Edge”
CV

Name: Tore Sager
Born: 23 June 1945
Nationality: Norwegian
Present position: Professor in the Department of Civil and Transport Engineering, NTNU
Degrees: Cand. oecon., Dr. techn

Work experience:
1971-76 Researcher, same place.
1976-77 Research scholar, Institute of Economics, University of Oslo.
1977-78 Researcher, SINTEF Transport Engineering.
1978-82 Research Economist, Norwegian Institute for Urban and Regional Research.
1982-83 Head of Department, same place.
1983-85 Associate Professor, Department of Transport Engineering, Norwegian Institute of Technology, University of Trondheim. Head of Department 1983-1986.
2003- Present:
Professor, Department of Civil and Transport Engineering, NTNU. Counsellor agreement with the research group SINTEF Road and Transport Engineering.

Membership in academic and professional committees:
Currently on the editorial board of the following journals:
- “Planning Theory”
- “Planning Theory and Practice”
- “European Journal of Spatial Development”
- “Journal of Architectural and Planning Research”

Present doctoral students supervised:
For the time being, I have four PhD students, two of them external. Six of my former students have received their PhD degrees. I have been a member of six other PhD committees at the Norwegian University of Science and Technology, one committee at the University of Lund, Sweden, one at Murdoch University, Western Australia, and one at the Queensland University of Technology, Australia. At the University of Bergen, Norway, I have acted as examiner in one defence.

Teaching
I teach master level courses in “Transport Systems” and “Public Transport and Transport Economics”. At the doctoral level, I teach “Transport Economics”.

Selected academic and professional publications 1999-2004:
• Peer-reviewed journals:
‘Rhetoric of economic rationality: the foundation of Norwegian transport planning’.
‘Manipulation in planning: the social choice perspective’.
‘Planning style and agency properties’.
‘Positive theory of planning: the social choice approach’.
‘Manipulative features of planning styles’.
‘Deliberative planning and decision making: an impossibility result’.
‘Rationality types in evaluation techniques. The planning balance sheet and the goals achievement matrix’.
‘Inter-agency transport planning: Co-ordination and governance structures’.

Other professional publications
‘Democratic Planning and Social Choice Dilemmas’.
‘A planning theory perspective on the EIA’.

Fields of interests and present research activities:
Main fields of interest are transport economics, evaluation technique, and planning theory. I often borrow theories and concepts from economics and political science and apply them to planning theory. Currently, I study institutions and planning processes in the transport sector in light of planning theory and new institutional economics. This is reflected in work on the Norwegian “National Transport Plan”. The following three articles (co-authored with Inger-Anne Ravlum at the Institute of Transport Economics) are now in the pipeline:
- Coordination, governance structures, and an interagency transport planning case. (Accepted for a book on planning in the network society)
- The political relevance of planners’ analysis: the case of a parliamentary Standing Committee. (Accepted by the journal Planning Theory)
- From projects to strategies: a transaction cost approach to politicians’ problems with strategic transport planning. (Accepted by the journal Planning Theory and Practice).

I am the Project Manager of a transdisciplinary project on the “Technological Space of Mobility”, connecting very different academic disciplines at the NTNU. The project runs from 2003 to 2006 and has a budget of $300 thousand in 2004. The research network of 15-20 participants comprises economics, transport engineering, architecture, product design, psychology, urban planning, ethics, and religious history.

Tore Sager
11 March 2005
Curriculum Vitae
Svein Fjeld

Biographical data
Name: Svein Fjeld
Positions: Director, Technology and Business Development
: Professor II in structural engineering, Norwegian University of Science and Technology
Education: PhD (Dr.Ing.), Structural engineering, NTH
Year of birth: 1939
Languages: Scandinavian, English, German and French

Key qualifications
International experience in design, construction and in service follow-up of large civil structures:
• Offshore structures
• Immersed tunnels
• Coastal structures
Professional expertise in the following disciplines:
• Coastal and marine engineering
• Structural design
• Concrete technology
• Soil mechanics

Education
1969
PhD. (Dr. Ing), Structural engineering, NTH (Technical University of Norway)
1961
M.Sc., Technical University of Norway, Civil Engineering
1983
Business Education, International Management Development Institute, Lausanne, Switzerland

Professional experience
2001 -
Dr.techn.Olav Olsen a.s, Director, Technology and Business Development
1999 -
NTNU (Norwegian University of Science and Technology), Professor II in structural engineering
1998 – 2001
Norwegian National Costal Administration, Chief engineer and deputy director for harbours and fairways
1995 -1998
COWI Consulting engineers and planners, Chief Engineer, Marine structures
1986 -1995
Norwegian Contactors, Vice president, Project development
1974 -1986
Det Norske Veritas, Veritec, Vice President, technical activities
1969 -1974
Multiconsult, Chief Design Engineer
1967 -1968
Norges Tekniske Høyskole, Research fellow
1965 -1967
Christiani & Nielsen, Copenhagen, Design Engineer
1961 -1965  Norwegian Geotechnical Institute, Consulting engineer

Other activities
• Author of 85 articles concerning harbour construction, marine constructions and safety
• Speaker and lecturer at a number of international congresses and conferences
• Technical authority and technical judge in Norwegian and international court cases
• Chairman of board, Monitoring Services AS
• Board member, Norsk Undervannsbro AS

Professional societies and committees

Norwegian Petroleum Directorate:
• Member of Code Committee for Regulations concerning Loadbearing Structures in the petroleum activities
• Technical secretary for developing guidelines for safety evaluations of platform concepts.

Department of energy (United Kingdom):
• Member of committee to develop regulations for certifying oil platforms.

Newfoundland Petroleum Directorate, Canada:
• Member of Committee for Construction and Survey Regulations for Structures Offshore Newfoundland.

ACI (American Concrete Institute), USA
• Member of ACI Committee 357, Offshore Concrete Structures on the US Continental Shelf.

Member of international committees for evaluation of marine structures a. o.:
• Bjørvika immersed tunnel (Norway).
• Storebælt immersed tunnel crossing (Denmark).
• Submerged floating bridges (Norway).
• Benghazi LPG Load Terminal (Libya).
• Beaufort Sea drilling platform (Dome Petroleum, Canada).

FIP (Federation International de la Precontrainte):
• Chairman of commission for Concrete Sea Structures.
• NTNU (Norwegian University of Science and Technology)
• Member of committees for evaluation of professorship applicants and of doctorate theses.

Selected project assignments
• Responsible for design of substructure of the Øresund high bridge
• Responsible for design of the new container quay for Oslo harbour
• Responsible for the design of Sirevåg breakwater
• Responsible for fairway planning for main entrance to Oslo and Drammen
• Engineering manager for Heidrun TLP
• Design of Offshore gravity structures, a.o. Troll, Gullfaks A, B and C, Statfjord A,B and C
• Chief design engineer for Cod and Tor jacket structures
NAME: Ove Tobias Gudmestad
DATE OF BIRTH: 10. March 1947
NATIONALITY: Norwegian Citizen
FAMILY STATUS: Married with 4 grown-up children

PROFESSION: -Advisor in Marine Technology, Statoil, Stavanger, Norway. Employed since 1975
-Professor (Adjoint) of Arctic Offshore Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway since 2005. 
-Professor (Adjoint) of Marine Technology, University of Stavanger, Stavanger, Norway since 1994.
- Course responsible, Petrad, Stavanger, Norway

EDUCATION: -Dr. Scient, Hydrodynamics, University of Bergen, Norway, 1985
-Courses in Civil and Ocean Engineering, Massachusetts Institute of Technology, USA, 1979
-Teaching Training Seminar for High school teachers and University lecturers, 1971, University of Bergen, Norway
-B.Sc. Mathematics and Physics, University of Bergen, Norway, 1971

LANGUAGES: Scandinavian languages All fluent
English Fluent in speaking, reading and writing
German Fair in reading, operational in speaking
French Operational in reading

KEY QUALIFICATIONS:

Academic degree (MSc) in mathematics and physics with professional training as teacher. Advanced degree (Dr. Scient) in hydrodynamics with emphasis on waves and oceanographic conditions.

Additional training in civil and ocean engineering, arctic engineering, the assessment of the environment, risk and safety analysis, fabrication and construction aspects, concrete technology, management of the development of hydrocarbon resources and the economics of large projects.

Internationally recognized expert within his fields of expertise with preparation of 4 books, several compendia and presentation of 1800 papers in international journals and at international conferences. Holder of 20 Norwegian and International patents.
Extensive teaching activities with responsibility for several courses at University of Stavanger and the University Studies at Svalbard (since 1997). Responsibility for 30 M.Sc. and Ph.D. students.

In charge of an 8 weeks course on "Management of Petroleum Developments and Operations", Petrad/ Norwegian Petroleum Directorate (since 1991) and presentations of technology at a number of universities and companies.

27 years of experience from different positions within Statoil, Stavanger, Norway with emphasis on technology, project management and field development. The expertise covered includes aspects such as meteorological and oceanographic issues; civil, ocean and arctic engineering; design and installation of offshore pipelines; design, fabrication and installation of offshore platforms including jackets, concrete gravity platforms, floaters and ships. Furthermore, the expertise covers assessment of risk and safety of construction and installation projects; field and platform decommissioning; development and economical assessment of offshore hydrocarbon fields; project definition and management; and initiation of technology development projects.

COUNTRIES WORKED IN: Norway, Denmark, England, France, Italy, European Commission (Belgium), Russia, China, Vietnam, India, Nigeria, Iran, Cuba, Venezuela and USA.

ELECTED POSITIONS AND HONORARY POSITIONS HELD:
- Member of several national and international committees preparing Regulations and Guidelines for design of offshore platforms, 1982- Present
- Member and committee chairman preparing Norwegian Standards for Civil Engineering Structures, 1990-Present
- National delegate for preparation of ISO code on Ice loads

AWARDS:
- Melzer Grant, University of Bergen, 1971.
- NATO Science Fellowship Grant 1322, 1980.
- Norwegian Science Foundation Grant 2823, 1984.
- NATO Grant to arrange an Adv. Research Workshop, 1989
- Norwegian Science Foundation, Grant 110181/730, 1996/97
- Stavanger College, Grant for Strategically Research, 1997/98
- Stavanger University College, Grant to work with Gubkin University, Moscow.
- Doctor Honoris Causa at the Gubkin University of oil and gas, Moscow
- Appointed Technology Pioneer at Ocean Energy Center,
Appendix 3: CV’s of core teaching staff Barcelona
CURRICULUM VITAE (May 2005)

PERSONAL DETAILS

Name: Agustín Sánchez-Arcilla
Nationality: Spanish
Work address: Maritime Engineering Laboratory, LIM
Technical University of Catalonia, UPC
c/ Jordi Girona, 1-3, Campus Nord Edif. D1, 08034 Barcelona, Spain
Pho. 34-93-4016468, Fax. 34-93-4011861
E-mail: agustin.arcilla@upc.edu

EDUCATION

1977 Civil Engineer, Faculty of Civil Engineering, Madrid University of Technology, Madrid (Spain)
1979 Wegemt Graduate, Univ. Trondheim & Aachen, Norway and Germany
1979 Ph.D. in Civil Engineering, Technical University of Catalonia, Barcelona (Spain)

RESEARCH EXPERIENCE

1977-1984 Researcher Harbour and Coasts Lab, CEDEX, Ministry of Public Works, Madrid (Spain)
1984-1990 Senior Researcher, Maritime Engineering Laboratory, Technical University of Catalonia, Barcelona (Spain).
1990-to date Head of the Maritime Engineering Laboratory, Technical University of Catalonia, Barcelona (Spain).
1994-to date Vice-president of the International Centre for Coastal Resources Research - CIIRC (Spain)
1994-2002 Head of the Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).

TEACHING EXPERIENCE

1980-1984 Associate Professor. Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).
1984-to date Full Professor. Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).

LANGUAGES

<table>
<thead>
<tr>
<th></th>
<th>Speaks</th>
<th>Reads</th>
<th>Writes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Catalan</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>English</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>French</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>German</td>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
</tbody>
</table>
(H: high, M: medium)

RECENT RESEARCH PROJECTS

2000-2003 Researcher in the EU(DG-XII)-HPP/ARI project Transnational access for researchers to the majors research infrastructure "Canal de Investigación y Experimentación Marítima (CIEM)" (WAVELAB) (HPRI-CT-1999-00066)
2000-2003 Researcher in the EU(DG-XII)-HPP/ARI project Development and implementation of novel imaging velocimetry techniques suited to large-scale hydraulic facilities (HYDRIV) (HPRI-CT-1999-50019)

2000-2004 Researcher in the EU(DG-XII)-IHP project Research infrastructure cooperation network (HYDRALAB-II) (HPRI-CT-1999-40008)

2001-2004 Researcher in the EU(DG-XII)-EESD project Environmental design of low crested coastal defense structures (DELOS) (EVK3-CT-2000-00041)

2001-2004 Coordinator of the EU(DG-XII)-INCO project Estuaries and coastal areas. Basis and tools for a more suitable development (ECOSUD) (ICA4-CT-2001-10027 INCO-DEV)

2003-2004 Researcher in the EU(DG-XII)-HPP/ARI project Transnational access for researchers to the majors research infrastructure “Wave flume Canal de Investigación y Experimentación Marítima II” (WAVELABII) (HPRI-CT-2002-00195)

2004-2006 Researcher in the EU(DG-XII)-Global Change and Ecosystems project Integrated Flood Risk Analysis and Management Methodologies (FLOODsite) (GOCE-CT-2004-505420)

2003-2006 Coordinator of the MCYT project Previsión de oleaje en el Mediterráneo Español. Limitaciones, errores y propuesta de mejora (PREVIMED) (REN2002-03415)

2005-2009 Coordinator of the EU(DG-XII) Marie Curie project Modelling and assimilation for RoIf Environments. Limits of predictability (MARIE) (MTKD-CT-2004-014509)

PUBLICATIONS

Summary of all publications
- fifteen (15) books, more than 7 chapters of book, more than 55 articles in peer-reviewed journals, more than 120 communications in conferences and workshops, more than 100 technical reports.
- 16 directed Ph.D. Theses in Port, Coastal and Oceanographical Engineering.
- 32 M.Sc. Theses directed in Port, Coastal and Oceanographical Engineering.

RECENT PUBLICATIONS


OTHER MERITS AND PRECISIONS
- Associate Member of "The Society of Naval Architects and Marine Engineers"
- Associate Member (grade I) of "The Royal Institute of Naval Architects"
- Member of the "American Shore and Beach Preservation Association"
- Fellow Member of ASCE, American Society of Civil Engineers
- Membre of the International Association on Computational Mechanics (IACM)
- Member of the Canadian Coastal Science and Engineering Association
- Member of IFIAS (International Federation of Institutes for Advanced Study)
- Member of the International Association for Hydraulic Research (IAHR)
- Member of the European Geophysical Society - EGS
- Member of the Coastal Education Research Foundation
CURRICULUM VITAE (May 2005)

PERSONAL DETAILS

Name: José Antonio Jiménez
Nationality: Spanish
Work address: Maritime Engineering Laboratory, LIM
Technical University of Catalonia, UPC
c/ Jordi Girona, 1-3, Campus Nord Edif. D1, 08034 Barcelona
Pho. 34-93-4016468, Fax. 34-93-4011861
E-mail: jose.jimenez@upc.edu

EDUCATION

1987 Marine Sciences, Faculty of Marine Sciences, University of Las Palmas de Gran Canaria, Las Palmas (Spain)
1996 Ph.D. in Marine Sciences, Technical University of Catalonia, Barcelona (Spain)

RESEARCH EXPERIENCE

1989-1992 Researcher, Maritime Engineering Laboratory, Technical University of Catalonia, Barcelona (Spain).
1992-1997 Head of the research area on Coastal morphology, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
1997-to date Head of the research area on Morphodynamics and coastal management, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
2000-2005 Head of the Maritime Engineering Division, Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).

TEACHING EXPERIENCE

1989-1997 Associated professor, Department of Hydraulic, Maritime and Environmental Engineering, Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).
1997-to date Professor, Department of Hydraulic, Maritime and Environmental Engineering, Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).

LANGUAGES

<table>
<thead>
<tr>
<th></th>
<th>Speaks</th>
<th>Reads</th>
<th>Writes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Catalan</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>English</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

(H: high, M: medium)

RECENT RESEARCH PROJECTS

2001-2004 Researcher in the EU(DG-XII)-EESD project Environmental design of low crested coastal defense structures (DELOS) (EVK3-CT-2000-00041)
2002-2005 Researcher in the EU(DG-XII)-EESD project Video monitoring of littoral processes in support of coastal-zone management (CoastView) (EVK3-CT-2001-00054)
2003-2006 Coordinator of the Ministerio de Ciencia y Tecnologia MCYT project Desarrollo y validación de un método de valoración del recurso playa como ayuda a la gestión integrada de zonas turísticas costeras (MeVaPLaya) (REN2003-09029-C03/MAR)

2004-2006 Researcher in the EU(DG-XII)-Global Change and Ecosystems project Integrated Flood Risk Analysis and Management Methodologies (FLOODsite) (GOCE-CT-2004-505420)

PUBLICATIONS

Summary of all publications

- six (6) chapters of book, more than 46 articles in peer-reviewed journals, more than 118 communications in conferences and workshops, more than 60 technical reports.
- 6 directed Ph.D. Theses in Port, Coastal and Oceanographical Engineering.
- 52 M.Sc. Theses directed in Port, Coastal and Oceanographical Engineering.

RECENT PUBLICATIONS


CURRICULUM VITAE (May 2005)

PERSONAL DETAILS
Name: Joan Pau Sierra
Nationality: Spanish
Work address: Maritime Engineering Laboratory, LIM
Technical University of Catalonia, UPC
c/ Jordi Girona, 1-3, Campus Nord Edif. D1, 08034 Barcelona, Spain
Pho. 34-93-4016467, Fax. 34-93-4011861
E-mail: joan.pau.sierra@upc.edu

EDUCATION
1984 Civil Engineer, Faculty of Civil Engineering, Technical University of Catalonia, Barcelona (Spain)
1990 Ph.D. in Civil Engineering, Technical University of Catalonia, Barcelona (Spain)

RESEARCH EXPERIENCE
1985-1986 Junior Researcher, Maritime Engineering Laboratory, Technical University of Catalonia, Barcelona (Spain)
1986-1991 Researcher, Maritime Engineering Laboratory, Technical University of Catalonia, Barcelona (Spain).
1988-1991 Head of the Maritime Engineering Division, Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
1991-1995 Head of the research area on Maritime Climate, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
1994-2000 Head of the Maritime Engineering Division, Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
1997-to date Head of the research area on Coastal Hydrodynamics, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
2000-2003 Secretary of the Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).
2003-to date Head of the Department of Hydraulic, Maritime and Environmental Engineering, Technical University of Catalonia, Barcelona (Spain).

TEACHING EXPERIENCE
1986-1991 Associate Professor, Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).
1991-to date Full Professor, Civil Engineering High School, Technical University of Catalonia, Barcelona (Spain).

LANGUAGES

<table>
<thead>
<tr>
<th>Language</th>
<th>Speaks</th>
<th>Reads</th>
<th>Writes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Catalan</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>English</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>French</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

(H: high, M: medium)
RECENT RESEARCH PROJECTS

1997-2001 EU(DG-XII)-MAST-III project Coastal study of three-dimensional sand transport processes and morphodynamics (COAST 3D) (CT97 0086 MAST III)

1998-2001 EU(DG-XII)-MAST-III project Preparation and integration of analysis tools towards operational forecast of nutrients in estuaries of European rivers (PIONEER) (CT98 0170 MAST III)

2001-2004 EU(DG-XII)-EESD project Environmental design of low crested coastal defense structures (DELOS) (EVK3-CT-2000-00041)

2001-2004 EU(DG-XII)-INCO project Estuaries and coastal areas. Basis and tools for a more suitable development (ECOSUD) (ICA4-CT-2001-10027 INCO-DEV)

2005-2009 EU(DG-XII)-Marie Curie project Modelling and assimilation for RoFl Environments. Limits of predictability (MARIE) (MTKD-CT-2004-014509)

PUBLICATIONS

Summary of all publications

- 5 chapters of book, more than 24 articles in peer-reviewed journals, more than 68 communications in conferences and workshops, more than 55 technical reports.
- 6 directed Ph.D. Theses in Port, Coastal and Oceanographical Engineering.
- 32 M.Sc. Theses directed in Port, Coastal and Oceanographical Engineering.

RECENT PUBLICATIONS


Appendix 3: CV’s of core teaching staff Southampton
<table>
<thead>
<tr>
<th>FAMILY NAME:</th>
<th>Nicholls</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST NAMES:</td>
<td>Robert James</td>
</tr>
<tr>
<td>DATE OF BIRTH:</td>
<td>18 July 1958</td>
</tr>
<tr>
<td>NATIONALITY:</td>
<td>British</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>School of Civil Engineering and the Environment, Southampton University, Southampton, SO17 1BJ</td>
</tr>
</tbody>
</table>
| EDUCATION: | (• PhD Southampton University  
• BSc Southampton University) |
| LANGUAGE SKILLS: | English (mother tongue)  
French (poor) |
| PRESENT POSITION | Professor of Coastal Engineering, Deputy Head of School and Director of Research |
| YEARS WITH THE INSTITUTE: | 2004 - present |
| KEY QUALIFICATIONS: | His research has focused on understanding and managing long-term coastal change, especially impacts and adaptation to climate change and sea-level rise, including methodological developments, case studies and regional and global analyses. Within the DEFRA-funded ‘Fast Track’ Programme, a series of global analyses were developed (e.g., Nicholls, 2004) and this expertise has now been incorporated into a more general global assessment tool within the EU-funded DINAS-COAST project. He also co-ordinated the SURVAS project (http://www.survas.mdx.ac.uk/) and is a main contractor to the RegIS-2, ATLANTIS and BRANCH Projects, as well as three Tyndall Projects on the coast of East Anglia. He has been a lead author of chapters in four reports of the Intergovernmental Panel for Climate Change (IPCC): Second Assessment Report (1996); the Regional Assessment (1998); the Special Report on Technology Transfer (2000); and the Third Assessment Report (2001), and currently he is co-ordinating lead author of the ‘Coastal Zones and Low-Lying Areas’ chapter in the IPCC forth assessment report which will be completed and published in 2007. He has also provided expertise to national assessments such as the Foresight Flood and Coastal Defence Assessment, and international assessments such as the GEF-funded ‘Caribbean: Planning for Adaptation to global Climate Change’. He is an Associate Editor of Journal of Coastal Research and author of more than 80 journal papers and book chapters. |
| PROFESSIONAL EXPERIENCE RECORD: |  
| 2000-2003 | Professor, Flood Hazard Research Centre, Middlesex University, London  
2001 | Senior Visiting Scientist, Center For International Earth Science Information Network (CIESIN), Lamont-Doherty Observatory, Columbia University, New York (While Receiving Leverhulme Trust Fellowship)  
1996-2000 | Reader, Flood Hazard Research Centre, Middlesex University, London  
1994-1996 | Senior Lecture, Flood Hazard Research Centre, Middlesex University, London  
1990-1994 | Faculty Research Associate, Laboratory for Coastal Research, University of Maryland |
Teaching activities for 2002/2005:
- Coastal Geomorphology (at Middlesex)
- Coastal Management (at Middlesex)
- Research Methods (at Middlesex)
- Contemporary Coastal Engineering
- Coastal Morphodynamics (to start 2005/06)

Publications

Principal (journal) publications (since 2002):


CURRICULUM VITAE

John Reginald CHAPLIN

Present position (since 1999)

Professor of Applied Fluid Mechanics,
School of Civil Engineering and the Environment, University of Southampton,
Southampton SO17 1BJ.

Academic qualifications: BSc (1st class honours, 1967) and PhD (1970) in Civil Engineering, University of Bristol.

Professional qualifications: Chartered Engineer, Fellow of the Institution of Civil Engineers.

Previous employment:

1986 – 1999  Professor of Hydraulics,
Department of Civil Engineering
City University, London

1985 – 1986  Senior Research Engineer, Applied Fluid Mechanics Division,
British Maritime Technology Ltd (formerly National Maritime Institute), Teddington, Middlesex.

1974 – 1985  Lecturer (appointed Senior Lecturer 1983) in Civil Engineering,
University of Liverpool.

1972 – 1974  Assistant Engineer,
Rendel, Palmer & Tritton (Consulting Engineers), London

1970 – 1972  Research Associate,
Institute of Hydromechanics, Karlsruhe University, Germany

Research Interests

Focused since the mid 1970s on experimental and theoretical work on waves and fluid/structure interaction. Much of this work has relied on innovative experimental techniques applied to problems of non-linear wave mechanics, wave loading and structural response. It has led, for example, to improved understanding of the violent water surface motion generated by wakes of bluff bodies, the ringing response of compliant offshore structures, hydrodynamic damping of submerged cylinders, and vortex-induced vibrations of deep water tension risers.

Membership of other bodies

- American Society of Mechanical Engineers
- EPSRC Peer Review College 1997–2005
- Society for Underwater Technology (Chairman of the SUT Group on Environmental Forces 1995-2000)
• International Society of Offshore and Polar Engineers (Member of the Technical Committee)
• 23rd International Towing Tank Conference Committee on Waves
• British Marine Hydrodynamics Panel.

**Recent research projects**

• Splash zone pressures on a vertical cylinder in steep waves, Statoil, 2005-2006
• Data logger characteristics, BP, 2005-2006
• Vortex-induced vibrations of deep water risers (in collaboration with Imperial College), EPSRC, EC, B P Exploration Operating Co Ltd, 2002-2005
• Strong turbulence at a free surface (in collaboration with University of Bristol, and INSEAN, Rome), EPSRC, 2002-05
• Scars and flow separation from a free surface (in collaboration with University of Bristol), EPSRC, 2004-07
• Hydrodynamics of Marine Current Turbines for Electrical Power Generation, EPSRC, 2002-05
• The Onset of Disturbed-Laminar Flow Over an Oscillating Cylinder, EPSRC, 2001-04
• The hydrodynamics of an articulated cylinder wave energy converter, EPSRC, 2000-02
• Hydrodynamic damping of cylinders in waves and currents at large scale, EPSRC, 1998-2000
• Violent water surface behaviour around large vertical cylinders in large waves, EPSRC, 1998-2000

**Selected publications**


**Recent Invited lectures and seminars**

Norwegian University of Science and Technology; University of Sao Paulo; Imperial College (Civil Engineering, Aeronautics), Oxford University (Engineering), Washington University (Civil Engineering), University of California at Berkeley (Naval Architecture), UC Santa Barbara (Ocean Engineering), WEGEMT Workshop, Université Toulon-Var, France, Danish Technical University (Applied Mathematics and Mechanics).
CURRICULUM VITAE

Name: Gerald U. Müller

Address: 352 Winchester Road
Southampton SO16 6TW
UK

e-mail: g.muller@soton.ac.uk

Tel.: 023 8051 2417 (Home)
023 8059 2442 (Work)

Date of Birth: 23.03.61

Marital Status: Single

Nationality: German

Summary: At present I am employed as a senior lecturer at the University of Southampton, Civil Engineering Department. My duties involve teaching, administration and research. I am the co-ordinator for the MSc course in Coastal Engineering, lecturing Fluid Mechanics and Coastal Engineering.

My research activities can be broadly categorised as follows:
• Environmental loadings in the coastal environment, fluid-structure interaction and structural integrity and response.
• Low head hydro power system development
• Marine energy systems.

Qualifications:
7/80 Abitur
6/85 Diplom - Ingenieur, FH Frankfurt, Civil Engineering Department, Specialisation: Structural Engineering, Final mark: 1.5 ( = 90%)
12/86 M.Sc., Queen's University Belfast, Civil Engineering Department
7/93 Ph.D., Queen's University Belfast, Civil Engineering Department

Employment History:
01/2005 – present: Senior Lecturer, University of Southampton, Civil Engineering Department
M.Sc. course co-ordinator
2/2000 – 12/2004: Lecturer, Queen's University Belfast, Civil Engineering
7/93 - 6/94 Research Fellow, Queen's University Belfast, Civil Engineering Department. Involved in study of design loads and stability of Vertical breakwater caissons, teaching and project supervision.
1/89 - 6/93 Research Assistant, Queen's University Belfast, Civil Engineering Department. Member of Wave Energy Project, concerned with wave impact pressures on shoreline structures.
10/87 - 12/88 National Service, 15 months, PzGrnDiv 2, PzAufklBtl 2 /
BrgSpZg 4 in 3436 Hessisch-Lichtenau, Group leader (PFC),
20mm gunner, radio operator (morse code), NBC specialist
10/86 - 9/87 Structural Engineer, 12 months, Wayss & Freytag AG, Theodor
Heuss Allee 110, 6000 Frankfurt 1. Design team leader,
5/85 - 8/85 Structural Engineer, 4 months, Fichter Schlüsselfertigbau GmbH,
6100 Sprendlingen

Education:
9/71 - 6/80 Herrmann Staudinger Gymnasium, 8765 Erlenbach (Grammar
School)
9/80-02/82 Universität Mannheim, Fakultät Sozialwissenschaften (Department
of Sociology)
3/82-7/85 Fachhochschule Frankfurt, Fb. Bauingenieurwesen, Civil
Engineering Department
9/85-9/86 Queen's University Belfast, Department of Civil Engineering

Awards:
3/85 Mörsch - Studienpreis (Mörsch Award) for best final year project.
(Design of a footbridge in partially prestressed concrete)
1/87 Hawker - Siddeley Prize for best Master's project (Compressive
Membrane Action in Reinforced Concrete)

Affiliations:
Member Institution of Civil Engineers
Member Society for Underwater Technology
Member International Association for Hydraulic Research IAHR
Reviewer for Coastal Engineering

Selected publications


“‘Modern’ engineered water wheels of the late 19th Century”, G. Müller, 2004, IAHR
Newsletter, Vol. 21, No. 2, 25-26, ISSN-0022-1686.

“Characteristics of pressure pulses propagating through water filled cracks”, G. Müller, G.

“Discussion note for: Old Watermills – Britain’s new source of energy?” by G. Müller & K.

“Old water mills – Britain’s new source of energy?”, G. Müller & K. Kauppert, 2003, Het
Ingenieursblad (Journal of the Belgian Institution of Engineers), No. 3, 8 - 9 (shortened
reprint).

ICE Civ. Eng., Vol. 150, No. 4, 178-186, ISSN 0965 089 X.
<table>
<thead>
<tr>
<th>FAMILY NAME:</th>
<th>Amos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST NAMES:</td>
<td>Carl Leonetto</td>
</tr>
<tr>
<td>DATE OF BIRTH:</td>
<td>June 15, 1949</td>
</tr>
<tr>
<td>NATIONALITY:</td>
<td>British</td>
</tr>
<tr>
<td>MARITAL STATUS:</td>
<td>Married</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>69 Ashdown Way, Romsey Hampshire, UK, SO51 5QR</td>
</tr>
</tbody>
</table>

**EDUCATION:**
- PhD Sedimentology, Imperial College, London
- BSc Oceanography/geology, University of Wales, Swansea

**LANGUAGE SKILLS:**

<table>
<thead>
<tr>
<th>Language</th>
<th>Spoken</th>
<th>Written</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>native tongue</td>
<td>native tongue</td>
</tr>
<tr>
<td>Italian</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>French</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

**PRESENT POSITION**
Personal Chair, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton

**YEARS WITH THE INSTITUTE:** 1999 - present

**KEY QUALIFICATIONS:**
Professor Amos is co-director of the Centre for Coastal Processes, Engineering and Management and head of the Sediment Dynamics research theme of the National Oceanographic Centre, Southampton (NOCS). He has a wide background in applied coastal sediment transport practice and theory spanning 30 years that is strongly linked to applied issues of the coastal zone. He co-directs a M.Sc. in Environmental Coastal Engineering and is central to the development of coastal research at NOCS. He is presently involved in three major EU projects (BIOFLOW, EURODELTA and EUROSTRATFORM) which links 30 coastal institutes throughout Europe and about the same number in USA and Canada. He teaches coastal dynamics at the International Maritime Academy (IMO/IMA) at Trieste and is on the board of advisors to the Coastal Centre (ENEA, La Spezia, Italy). He is a consultant to Consorzio Venezia Nuova (the builders of the storm gate project in Venice) and CORILA (Committee for Research in Venice Lagoon). He is a member of the Science Committee for Ocean Research (SCOR) on Sea-level rise on erosion of muddy coasts (Working Group 122) and is on the editorial board of Journal of Coastal Research and Estuarine, Coastal and Shelf Science. His recent contributions have been the preparation and execution of coastal research at Southampton University and the preparation of a long-term strategy for coastal research at NOCS.

**PROFESSIONAL EXPERIENCE RECORD:**

<table>
<thead>
<tr>
<th>Years</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2003</td>
<td>Senior Lecturer, School of Ocean and Earth Sciences, National Oceanography Centre</td>
</tr>
</tbody>
</table>
| MEMBERSHIP OF PROFESSIONAL BODIES | - Member International Association of Sedimentologists  
| - Member American Geophysical Union  
| - Member SCOR Committee 122 |
| OTHER: | Teaching activities for 2003/2004: |
|  * LECTURES | - Third-year course: Applied Sediment Dynamics  
| | - Second-year course: Estuaries  
| | - Second-year course: Coastal floods and erosion  
<p>| | - First-year field course: oceanography Key Skills |
| PUBLICATIONS | <strong>Principal (journal) publications (since 2003):</strong> |</p>
<table>
<thead>
<tr>
<th><strong>FAMILY NAME:</strong></th>
<th>Tanton</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FIRST NAMES:</strong></td>
<td>Trevor William</td>
</tr>
<tr>
<td><strong>DATE OF BIRTH:</strong></td>
<td>14/3/45</td>
</tr>
<tr>
<td><strong>NATIONALITY:</strong></td>
<td>British</td>
</tr>
<tr>
<td><strong>ADDRESS:</strong></td>
<td>School of Civil Engineering and the Environment, Southampton University, Southampton, SO17 1BJ</td>
</tr>
</tbody>
</table>
| **EDUCATION:** | - PhD Southampton University  
<p>| | - BSc |
| <strong>LANGUAGE SKILLS:</strong> | English |
| <strong>PRESENT POSITION</strong> | Professor of Environmental Engineering and Head of the Environmental Group |
| <strong>YEARS WITH THE INSTITUTE:</strong> | 1981 - present |
| <strong>KEY QUALIFICATIONS:</strong> | Professor Tanton has been working in the area of environmental management and planning for over 25 years. He is presently carrying out research into the sustainability of Spartina salt marshes in the south of England and into the joint probabilities of flooding in estuarine towns resulting from sea level rise and increased fluvial events. He is leading large European research teams looking into both the sustainability of the water resources in the Aral Basin and the sustainability of the River Nura in Northern Kazakhstan and the sustainability planning of the water resources for the internationally important terminal wetlands. He is researching on the use of satellite data for water resource planning and in the use of remotely sensed data for determining evapotranspiration. He has developed water resource planning models for the water resources of the Aral Basin. He is a strategic advisor to the World Bank on environmental and infrastructure projects in the former CIS. And holds an Honorary Chair at the Academy of Architecture. He has extensive experience working with saline and sodic soils and their reclamation and in the management of irrigated water resources. He has extensive experience in developing practical solutions for the large environmental problems of central Asia. |
| <strong>PROFESSIONAL EXPERIENCE RECORD:</strong> | |
| <strong>1981-2005</strong> | Lecturer, Senior lecturer and Professor of Environmental Management, Southampton University |
| <strong>1981-2005</strong> | He has worked as a member of a number of strategic plans for the sustainable management of the water resources in of large river basins, Nile, Indus, Aral and San Francisco |
| <strong>1991-1997</strong> | Carried out a number of EIAs for development projects on Island States in the Pacific and Caribbean, and in East Africa |
| <strong>1992</strong> | Writing of a position paper for the World Bank: Management of the water |</p>
<table>
<thead>
<tr>
<th>Resources of the Indus basin</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1971-1981</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>* LECTURES</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**PUBLICATIONS**

*Principal (journal) publications (since 2003):*

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
</table>
Appendix 3: CV’s of core teaching staff City. London
CURRICULUM VITAE (May 2005)
Professor L.F. Boswell

- **Current Position:** Professor of Civil Engineering
  - School of Engineering and Mathematical Sciences
  - City University
  - Northampton Square
  - London EC1V 0HB
  - Phone 44 (0) 207 040 8140 Fax: 44 (0) 207 040 0119
  - E-mail L.F.Boswell@city.ac.uk

  Nationality British

Degrees and Professional Qualifications:
- Doctor of Philosophy, University of Leeds 1969
- Doctor of Science, Technical University of Iasi, 1998
- Fellowship Membership of the following institutions,
  - Institution of Civil Engineers,
  - Institution of Structural Engineers
  - International Association of Offshore and Polar Engineering

Academic Employment:
- Research Fellow, University of London, Oct 1968-Jan 1972
- Lecturer, City University, Jan 1972-Oct 1984
- Reader, City University, Oct 1984-Dec 1998
- Professor, City University, Dec 1994-to present

**Personal Research, Scholarship and Awards:** Professor Boswell has been engaged in theoretical, experimental and numerical research in the areas of structural mechanics, analysis and design during his university career. Some of this work has applications in offshore structural engineering, in particular and structural engineering in general. A great deal of his work has been driven by the industrial requirement to solve problems.

Professor Boswell has published relevant material in internationally recognised journals such as, Geotechnique, Proc. of the Institution of Civil Engineering, International Journal of Solids and Structures and the International Journal of Constructional Steelwork. Alternatively and appropriately some material has been more effectively disseminated in special publications, such as Her Majesty’s Stationary Office and special editions of the International Journal of Marine Structures.

Professor Boswell has been responsible for writing a textbook and editing several others. In all, he has published over 100 papers in journals, conferences and contributions to textbooks. He has been an invited lecturer at conferences to deliver key-note address’s and at seminars and workshops.

Professor Boswell has obtained significant funding for his research activities from many sources and in particular, EPSRC, European Union, Department of Energy, Department of Trade and Industry, NATO and the Steel Construction Institute. The total value of this funding is over £2.0 million. He has obtained several awards for his research and was awarded the G.Asachi medal from the Technical University of Iasi, Romania for work involving thin walled structures in 1996 and more recently a doctorate from the same
university in 1998. In 2000, he was awarded the Structures prize from the International Society of Offshore and Polar Engineering, for his work in the area of offshore structural engineering. Professor Boswell received the best scientific poster award at the 1996 European Wind Energy Conference in Gothenberg, Sweden.

Professional Activities: **Professor Boswell’s professional activities have been and are currently varied. However, they support the belief that academic members of an engineering department must have close links with industry. He has acted as a consultant to BP, Wimpey Corporation, Noble Denton, Global Maritime, the Steel Construction Institute and British Steel (now Corus) In the latter, work has been carried out to develop the three latest products for application in Civil Engineering Construction. He has been involved in several joint industry studies. Work undertaken in collaboration with Dewhurst McFarlane contributed to a national award for design for small consulting engineering organisations. Currently, Professor Boswell is a member of the Board of Directors of the International Society of Offshore and Polar Engineering and a member of the Independent Advisory Board of The American Bureau of Shipping. He is a member of the Education and Research and Development Committees of the Society of Underwater Technology and sits on European Committees for Construction and Education.**

Professor Boswell is the programme Director for the Master’s degree in Marine Operations and Management, which is offered by the School of Engineering and Mathematical Sciences of City University, London.

**Recent Publications:**


NICK SINCLAIR-BROWN, LLB, MA (Cantab)

My involvement with maritime operations and vessel management arises from my commercial career as a lawyer in the offshore oil and gas industry and subsequent and continuing work in sub sea operations. It includes facilitation of the first registration for the Turks and Caicos registry and a number of registrations of vessels in various flag states. This year I have been involved with the recommissioning and reflagging of a vessel (From Bermuda to Panama). Apart from the ordinary certification surveys this included the recent implementation of International Maritime Organisation of the new ISPS code applicable under the SOLAS Convention.

This is reinforced by my academic interests in international law and shipping law each of which overlap in relation to Flag State rights and obligations in relation to registry management.

Academic discipline is strongly analytical and provides a useful basis for feasibility studies. The last feasibility study undertaken by me was for the Commonwealth Secretariat and was presented by me in Autumn 2003 at the annual meeting of Commonwealth Finance Ministers in Brunei. This related to public – private finance of infrastructure development and was focused more on organisation than implementation (copy attached). Currently pending approval by the E.U. Commission is a study on ‘Organisation of Intellectual Property Legislation in Central Asia’. Here I am nominated in the proposal requested by the EU from the government of Kyrgyzstan. The purpose is to address the concern is local intellectual property loopholes will undermine planned investment and technology transfer by companies based in the EU.

The CV is in three parts: A. Commercial Activities; B. Academic Activities; C. Other Activities

Part A commercial activities

Professional Qualification
Admitted as a solicitor 1975

Corporate Career

Mobil Exploration Norway (1976-78). Following admittance as a solicitor, I was recruited by Brown and Root to be a member of the Mobil Statfjord A project team at the inception of its programme to develop the first offshore oil field in Norway. Based in Bergen, my main role was the preparation, negotiation, and administration of major contracts and charters, coordination of government reporting, and liaison with head office on risk management and contract approvals.

Brown and Root (1978-80). As contracting activities wound down in Norway, I joined the legal department of Brown and Root in London. As one of the largest construction and engineering companies in the world, their activities were both diverse and world wide. My time was spent as a lawyer supporting their European and African operations where I specialised in the formation and administration of joint ventures and project management contracts, vessel charters, and protection of the company’s proprietary technology.

Wharton Williams (1980 – 84). I was recruited as the legal advisor when this diving company was a couple of years old. With worldwide operations, I was given responsibility for organising its legal and contracting affairs including insurance and tax management strategies. I was also responsible for overseeing ancillary salvage operations and undertook the commercial and legal organisation of the successful diving operation to recover gold.
bullion for the Russian and British Governments from the wreck of HMS Edinburgh. This lay at a depth of over 800 feet in the Barents Sea, and the operation remains in the Guinness Book of Records. By the time of my leaving the company had become one of the leading international diving and sub-sea engineering companies.

Consortium Recovery (1984-88). In 1984 I was invited to join the Board of Consortium Recovery which had just been formed by institutional funding to provide project management services to deepwater salvage operations. Here I was responsible for finance, administration and logistics as well as legal matters related to its operations. I was also able to work with the Scottish Development Agency in establishing a conservation laboratory in Dundee that enabled the freeze-drying technology, pioneered by the Mary Rose project, to be continued and expanded to fields outside archaeology such as joint programmes of archival restoration with the British Library.

Underwater Excavation Ltd (1988-94). In 1988 I was given control of Consortium Recovery and with a colleague restructured its activities. This was done by developing industrial applications for its underwater excavation technology in respect of which I had previously secured patent protection in a number of jurisdictions using international Patent Cooperation Treaty procedures. As chairman of the restructured company (Underwater Excavation), I was able to see it through initial refinancing to full operational trading. As well as excavation operations, the company built up considerable expertise in the construction and operation of underwater robotics and provided equipment and personnel to Government agencies and other clients around the world. It was winner of the Scottish Offshore Technology Award for 1989 (having been commended the previous year), a finalist in the Norwegian Offshore Technology Awards 1990, a runner up in the Castro R&D awards 1991, commended in the 1992 Scottish Innovation awards. As a consequence a consortium of major oil companies and the EU agreed to fund a £450,000 development programme to produce a second generation of technology. In 1994, I organised the acquisition of the company by a larger group and the Company received a Queens Award for Industry in recognition of its innovative technical achievements.

Continuing Consultancy

My consultancy activities concentrate in three industrial sectors: 1. Maritime and sub sea operations (mainly sub sea salvage projects); 2. Large scale infrastructure engineering and construction (last significant engagement: Balfour Beatty (Capital Projects); and 3. Defence (mainly anti terrorism technology – Alford Technologies and Raytheon Inc).

part B Academic activities

CURRENT ACADEMIC POSTS

Cambridge University: Fellow of the Lauterpacht Research Centre for International Law, member of the Law Faculty, Law Fellow and Vice President of Hughes Hall.

CURRENT RESEARCH

My main research interests focus on international trade (both modern and historic) and its role in promoting innovation, social change and economic development. From this has developed research in international investment, and labour, intellectual property, and environmental issues. I am an advisor to the Centre for International Sustainable Development Law at McGill University where I gave a paper on the ‘Social Impacts of Unilateral Trade Measures’ which was also circulated as a background paper to one of the panels at the Johannesburg Rio + 10 Summit in 2003.
My interest in infrastructure and development led to a paper ‘Public Private Partnerships - a Cooperative approach to Infrastructure Development’. This was commissioned by the Commonwealth Secretariat and delivered as the technical theme paper at the 2003 Meeting of Commonwealth Finance Ministers.

Currently awaiting approval by the E.U. Commission is a study on the ‘Organisation of Intellectual Property Legislation in Central Asia’. I have been put forward for this project by the Kyrgyzstan Government at the request of the EU Commission, which is concerned that intellectual property loopholes will undermine planned investment and technological transfer in the region.

Recent Papers etc

2003 saw two publications: a 10,000 word chapter on the ‘Management of Endangered Species’ in UNESCO’s millennium Encyclopaedia of the World’s Ecosystem; and a chapter on International Regulatory Design in ‘Regulation, Enforcement and the International Trade in Wildlife’. The latter, which included a preface by the Secretary of State for the Environment, comprised the papers of an international conference chaired by me, which brought together the results of a multi-institutional initiative funded by the UK Department for Environment, Food, and Rural Affairs, and the European Commission. Currently awaiting publication is a paper on joint and several responsibility, which has been commissioned as a chapter for a critical analysis of the International Law Commission proposals on State Responsibility.

More general conference papers include contributions on international regimes concerning corruption; sanctions, arms and dual use export controls, and counter terrorism, as well as an analysis of the prospects for last years Nigerian Presidential elections.

Teaching

**Cambridge University:** International law and international trade and sustainable development issues on the M.Phil and M.Stud. courses in International Relations. The latter covers the history and theory of Free Trade and its institutionalisation under the GATT and WTO, analysis of issues arising from the pressures for harmonisation of standards (e.g. environmental and labour protection, intellectual property and competition and anti trust).

**City University:** Course advisor in shipping law for a maritime master’s course. The course aims to facilitate the move to management positions on shore of experienced naval and merchant marine officers. The module covers basic law of contract and charters, the Law of the Sea Convention and the International Maritime Organisation regime, and P&I insurance.

Other lecturing during 2004

Course Director and Lecturer for a Cambridge University / Ministry of Defence short course for senior armed services officers on ‘Economics in the 21st Century’,

Lecturer for a course for IBM executives on international trade and the World Trade Organisation, and Intellectual Property Rights and access to medicines and the resources from which they are derived.
C.T.S. MARINE CONSULTANTS LTD.

Tel. +44 (0) 20 8994 8741
Mobile - 07718390325
E-mail Info@ctsmarine.co.uk
http://www.ctsmarine.co.uk

SIMON THOMAS CULSHAW

Nationality:- British

Qualifications:-
Bachelor of Science Joint Honours 2nd class. 1972.
Fellow of the Royal Institution of Chartered Surveyors. – Chartered
Surveyor (1985.)

Professional Organisations:-
Durham University - Attended course on Marine Boundary Delimitation
Liveryman, Warden and Master 2003/2004- Honourable Company of
Master Mariners.
Member of the Pipeline Industries Guild. (Member of subsea innovation
judge panel to
The Technical and Industry committee.)
Member of the British Remote Sensing Society.
Member of the Canadian Alliance of Marine Remote Sensing
Member of the Society of Underwater Technology. (Member of policy
committee)
Fellow of the Royal Institute of Navigation.
Fellow of the Royal Geographical Society.

Countries worked in:-
Most Countries world-wide with a littoral zone (Coast).

Employment History:-
1985/ present.
Founded CTS Marine Consultants Ltd. -Valuations and investigations. Ports, Offshore oil and gas
operations worldwide. environmental audits, Satellite and Airborne remote sensing operations, position
fixing and boundary delimitation technical - subsea, marine and coastal sensing – surveys and pollution
monitoring - environmental impact statements.

1982/85.
John Brown Engineering and Construction. - Installation/Marine Manager Procurement, negotiations,
evaluation and management for and during the construction phase of marine and off-shore installations
- platforms, pipelines and subsea developments. Forensic engineering in port development and
accidents.

1981/82
CWA Offshore Ltd. – Port development, offshore oil and gas warranty surveys, P&I Club ship and
accident surveys, safety, marine pollution and environmental audits.

1977/81.
Newfoundland Ocean Research Corporation. – Manager Oceanographic and hydrographic unit –
procurement, negotiations, evaluation and management of Arctic, Sub-Arctic and the Newfoundland
and Labrador Coast offshore oil and gas operations, marine pollution investigations, environmental
impact statements, ice engineering and high latitude navigation, terrestrial / oceanographic monitoring operations.

1973/77.

1956/73.

Some typical projects:-

1975-Present - Team member and manager - World-wide ports, off-shore oil & gas operations. Evaluation, negotiation and the execution of marine operations particularly in environmentally sensitive locations. Operations spearheading emergency activities, liaison with local, overseas governments, bureaus, institutions and authorities.

1991 - Consultant - World-wide, formulated construction and hydrographic requirements for the certification of "clear seabed" and "debris acceptance levels". Decommissioning of platforms and storage vessels.

1986-1990 - Marine Manager - Europe, Southern Africa, South Atlantic and South East Asia, responsible to Consulting Engineers involved in port development boundary locations of development, evaluations and dredging surveys.

1992 - Consultant - Responsible to Consulting Engineers in Great Britain for the design, specification to Canadian Government safety and environmental standards and sourcing of cost effective equipment for moorings and link spans between the land and floating structures under construction at deep-water moorings in Northern Canada.

1992 - Marine operations consultant - East Africa, Rufiji River. Responsible to the client for resolving the most safe and environmentally friendly cost effective method of crossing the river, primarily during the flood - by ferry or bridge. This river constituted a major traffic flow problem on a coast road in Tanzania.

1984-1994 - British manager - Responsible to a French marine, oil and gas design, construct and installation engineering directorate in the European and Southern African marine and off-shore markets. Business development and dealing with submissions to clients, subsea, pipeline and turnkey construction projects. Economic, location and environment planning and where required the simulation of construction activities at design phase of projects. Spearheading unusual operations and liaison with overseas governments, institutions and authorities.

1980-present - Consultant - Providing assistance which, from time to time, includes simulation and modelling activities, reports on evidence and offers expert opinion to solicitors and councillors, with particular reference to environmental, oceanographic, navigation position fixing, surveying and sub-sea operation claims and the financial implications of the claims in the marine, coastal and off-shore industries..

1991 - Marine consultant - Responsible to the engineering group designing a new port development in Malaysia advising and reporting on ship handling, pollution control and safety aspects relating to the requirement of harbour tugs, navigation, underkeel clearances and hazard control relating to hazard cargo complex. Also considered the international boundary over which the new port will extend.

1992 – 1994 Marine consultant - Employed by the Danish Government to assist the Great Belt bridge construction team submit counter claims to the International Courts of Justice in The Hague. It was claimed by a third party government that there was a requirement to provide a safe limitless air draught channel for mammoth structures e.g. mobile drilling units - to pass through a proposed bridge span.
1993-1994 - Project Manager - Research into the usefulness and cost effectiveness of satellite borne microwave sensors, particularly Synthetic Aperture Radar in ERS-1 as a possible cost effective monitoring tool for detecting marine pollution, environmental elements, area and boundary policing and assisting in the management of world-wide Exclusive Economic Zones.

1993-1994 - Consultant - Acting on behalf of the Secretary-General of the International Maritime Organisation in Azerbaijan carrying out a needs assessment mission to furnish the multi-sectoral umbrella programme - UNDP with information for the protection of the marine environment, operation of MARPOL, Local Flag register and marine operations in the Caspian Sea.

1995 - present - Part time university lecturer - Safety and planning aspects in marine, harbour and offshore construction. (Safety and anti-pollution requirements and guidelines when working over or near water).

1995/96 - Consultant - Acting on behalf of the Secretary-General of the International Maritime Organisation in the Northern Magrab States of Africa - Morocco and Tunisia. The mission was to determine the countries' stage of development for combating marine pollution MARPOL, elements of land pollution relevant to marine affairs in the above countries were also investigated.

1996 - Project Manager - Managed an environmental base line survey which also involved the evaluation of offshore and island installation response plans and the provision of a GIS to determine the location of response equipment. During this period an environmental impact statement of a new offshore installation (7 jackets and 117km pipeline) was undertaken in the southern half of the Arabian Gulf. This project also included the development of pollution emergency response planning during the transport period of the project. Satellite remote sensing data was used extensively for habitat and boundary mapping in the operational areas of the studies and also as a base for the GIS.

1996/7 - Adviser - Environmental impact audit and oil spill response plan to a future oil terminal and offshore development in the Black Sea. This included both the construction and operational phase of the project.

1997. - Consultant - Needs assessment on behalf of the United Nations Development Project in the State of Bahrain. The International Maritime Organization was charged with assessing the requirements of the State to ratify a number of international IMO conventions including Oil Spill Response Planning MARPOL.

1997 - 98 - Involved in the use of Canada Radasat - SAR - and the use of the images to track shipping and marine pollutants. Identification of ship type is now feasible down to 4m length in wind 10m/s - force 5/6.

1998 - Environmental Consultant - Advised Insurance market on the environmental and possible catastrophic pollution elements and risk analysis relating to the decommissioning of oil and gas structures world wide. Also the relevance to Littoral States EEZ was taken into account.

1998 - UK Project Manager - Navigation aids – Advising client on the environmental aspects and requirement of the LED navigation aid construction in the UK.

1999 – 2000 Safety, environmental and Navigation consultant – Redesign aids to navigation, reassessment of pollution response plans under keel clearances, channel width, local marine boundaries and anchorage to facilitate night navigation in a port in Pakistan.

2000 – Conversion surveys of vessels. Vessels to be converted from offshore supply boat to luxury vessels. Valuation of vessels.

2001 – Present - Director of a new venture – A subsea insurance services company specialising in underwater technology including marine boundary registry of vehicles and environmental aspects of introducing some technologies into environmentally sensitive subsea areas.

2001 – Present. Assisting in the delimitation of an African country’s Exclusive Economic Zone (EEZ). Thereby enabling the country to police and manage all aspects of the natural environment of the EEZ under the rules of UNCLOS.

2002 – 2003 Advisor – Developing marine operations procedures for the building, towing and emplacement onto sensitive seabed of a concrete LNG process, storage and export plant to be built in Europe and towed to offshore West Africa. Developing procedures for pipeline boundary crossings.

2003 – 2004 – Assessing the risk to seabed and water column, environmental, land boundary negotiations delay and construction delays during the building, installation and commissioning phases which may impact on the first product delivery of an offshore complex in the Black Sea due to be installed in the summer 2004.

2003 – Present – A forensic examination of the marine and seabed environmental aspects relating to a drill ship unable to keep station during adverse weather conditions in the Bay of Bengal.

2004 – 2005 – Hydrographic and photographic survey of an alleged damaged coral reef in the West Indies. The littoral state is demanding financial compensation from a shipping company.

2005 – Present – Public enquiry relating to the development of a port in the United Kingdom which includes negotiations with NGOs, public authorities, construction engineers and local fishery industry.

Publications: -

Winter Shipping on North Newfoundland and Labrador coasts.
POAC Conference, St. John's 1983.
S.T. Culshaw.

Ship in the Ice Project.
POAC Conference, St. John's 1983.
B.LeDrew/S.T.Culshaw

S.T.Culshaw and Dr W.Russell.
Not Published 1985.

Thesaurus and I.T. Index of Navigation
Terms compiled in conjunction with RIN Library Study Group. Royal Institute of Navigation.
S.T. Culshaw Chairman 1986.

S.T.Culshaw.

S.T.Culshaw

A Visual Interpretation of an ERS-1 SAR Image of the Thames Estuary.
S.T.Culshaw
Weather and future satellite monitoring systems.
S.T.Culshaw.

Hydroplus Fusegates - Four years on. British Dam Society - York 1996,
S. Chevalier, S.T.Culshaw, J.P.Fauquez

The Use of Satellite Imagery in Coastal Zone Management.
European Faculty of Land Use and Development - Strasbourg.
University of Portsmouth - 1997.
S.T.Culshaw.

The role of consultants in maritime projects.
S. Culshaw

Satellite Borne Monitoring Sensors – help or hindrance to the Ship Master?
The International Command Seminar – 2000
S.T. Culshaw

Professional Institutions working with Universities to develop academic courses for use in the professions.
HCMM journal – 2004
S.T.Culshaw

Samples of Marine Operation Enquiries:-

"Serenitas". Late arrival at port of loading on a voyage from East Africa to Brazil. - On behalf of the Charterer submitted the environmental factors to support the claim that the vessel incurred the loss of the on going cargo from Brazil to Europe.

"Barge Durban". Planning Permission. - Submitted to Local Government Planners relevant factors in support of the vessel remaining at its moorings in the upper reaches of the River Thames.

"Ocean Surveyor". Loss of seismic equipment. – Submitted on behalf of the equipment owner the environmental factors leading to the loss of this equipment in ice infested waters.

"Vinga". Jetty damage. - On behalf of the vessel owner submitted the environmental factors which allegedly lead to the vessel breaking its moorings and subsequently damaging the jetty at Botas in the Mediterranean Sea.

"Lucyon Trader". Ice damage to the vessel. - On behalf of the Charterer and in support of a claim that the vessel was allegedly unseaworthy reported on evidence of sea ice conditions and safe navigation procedures in a sea ice environment.

"Maersk Triton". Late arrival at port of discharge on a voyage from the Gulf Coast of the USA to Japan. - On behalf of the Charterers submitted the environmental factors, route planning and safe navigation elements to support the claim that the vessel allegedly arrived behind schedule at the port of destination.

"Lok Manya". Damage to Vessel. - On behalf of the Charterers submitted findings on cold weather and ice environment operations in the Gulf of Bothnia to support a claim that the vessel was allegedly in excess of the time limit of the Charter Party.

"Kallopi T". Late arrival at port of loading on a voyage from Rotterdam to the USA Gulf ports on route to Aqaba via Mediterranean Sea. - Submitted on behalf of the Charterers environmental, route planning and safe navigation elements to support a claim that the vessel was in breach of the Charter Party.
"Offshore Marine". Personal Injury. - On behalf of the claimant submitted environmental and safe navigation factors to support a claim of alleged negligence on the part of the Master.

"M.S.Karelia". Personal Injury. - On behalf of the claimant submitted environmental and safe navigation factors to support a claim of alleged negligence on the part of the Master.

"Tropical Lion". Hull Damage. - Examined and reported to the client on the validity and reliability of a physical model used to simulate the drift of mines seeded to the north of the storage tanker's position. It was alleged that a floating mine was responsible for the damage to the shell plating of the vessel and the subsequent oil pollution.

"Rowan Gorilla 2". Prove Salvage. - Two extra tugs were taken by the rig owners to support the tow nearing a lee shore in bad weather off the east coast of England. The exercise was to examine and report to the client on the validity of a claim of salvage by tug owners.

"Rybovsk". Container Damage. - On behalf of the cargo owners to examine the stability of the vessel which took on a heavy list during discharge. Several full containers fell onto the jetty and into the sea.

“Ioannis”. Ballasting systems malfunction. - It was alleged that the vessel damaged a part cargo of sunflower seeds during discharge at Liverpool. On behalf of the cargo owners examine the alleged malfunction of the bilge and ballast operating system. It is understood that ballast water was allowed to flow between compartments.

"Anax". Fuel and Speed Claim. - On behalf of the vessel owners to analyse the actual and forecasted weather on the vessel's route to determine the validity of a reported excessive fuel claim by the charterers.

Foundering – The investigation into the circumstances of a harbour tug foundering in the Western Approaches in connection of a prosecution brought by HM Customs and Excise.

**Sample of enquiries assignments.**

Drumbuie Public Enquiry:-Assistant to the Marine Operations Expert.

Drumbuie residents V. Contractors. Enquiry into the use of beach area as an area to locate a building basin in which to construct mammoth North Sea structures near to the village of Drumbuie, Loch Kishorn.

Kapakok Bay. Public Enquiry:- Project Manager.

Residents of Newfoundland and Labrador V. Mining Company. Environmental Impact Statement in support of the extraction of "Yellow Cake" from an open cast mine on the coast of Labrador.

Bell Is. Conception Bay. Public Enquiry:- Project Manager.

Canadian Federal Government. Environmental Impact Statement examining the feasibility of using a disused mineral mine as a subterranean fuel oil storage tank. The mine seams extended several kilometres under the sea into Conception Bay.

Bell Is. Strait. Enquiry:- Project Manager.

Provincial Government of Newfoundland and Labrador. Environmental Impact Statement examining a proposed seabed cable route across the strait, particularly emphasis was given to the dangers of seabed ice scour.

Medway Ports V. Road Developers. Impact Statement of vessels air draught and safety clearance on the height of a proposed road bridge over the River Medway.


The submission of counter claims on behalf of the Danish Government to the International Courts of Justice in The Hague. It was claimed that there was a requirement to provide a safe limitless air draught channel for mammoth structures to pass through a proposed bridge span.


Reported to the Severn Barrage Development Team on the safe and practical dimensions of shipping locks and approach channels in support of the conceptual design of the Barrage.

Piper Alpha Disaster:-Marine Operations.

Submitted to the Operator the designs of pipeline diversions around the effected area. Subsequently not used in the enquiry as the design was over taken by events.

Aquaculture Enquiries:-Environmental Manager.

Reported on coastal establishments in the Mediterranean Sea, Costa Rica, Straits of Gibraltar, Bahamas and the Red Sea in support of the alleged vulnerability of fish farm locations to sea level rise, marine, land and other pollutants and oceanographic episodes.
Appendix 4: Relevant collaboration
Appendix 4: Relevant collaboration

Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology
(non-exhaustive and presently active)

European collaboration on educational strategy
- EUCEET: European group of universities and higher education schools on civil engineering education (City, UPC, Trondheim are also participants)
- SEFI: Societe Europeen de Formation des Ingenieurs (also Trondheim as participant)
- IDEA League (cooperation four technical universities in the Bologna context Imperial, ETH, Aachen and Delft)

EU Socrates MSc student exchanges
- Reception of Socrates students from Spain, Italy, Germany
- Sending of Socrates students to Spain, Italy, UK, France

EU MSc students:
- Formal enrolment into both BSc and MSc program of students from Belgium, Germany, Italy and Spain

Non-EU MSc students
- Formal enrolment into both BSc and MSc program of students from China, Vietnam

EU PhD students:
- Full or partial guidance of PhD students from Italy, Rumania

Non-EU PhD students:
- Full guidance of PhD students from China, Vietnam, Egypt, Brazil, USA

EU FP6:
- Environment programme: Floodsite, Sandpit, CoastView
- Interreg programme: Northwest New Delta

International formal research collaboration:
- China: Yangtse estuary with Hohai and East China Normal University
- China: Yellow River with Tsjinhua University
- Vietnam: Red River Delta with Hanoi Water Resources University
- USA: Army Corps of Engineers, USGS, ONR, CPE

History of collaboration with partners:
- UPC: more than 15 years of joint research projects, student and staff exchanges;
- Southampton: more than 15 years of joint research projects and student exchanges with Prof R. Nicholls
- Trondheim: several years of co-operation on educational strategy;
- City, London: more than 10 years of joint research projects and staff exchanges.
Division of Marine Civil Engineering at Department of Civil and Transport Engineering, NTNU, Trondheim

Division of Marine Civil Engineering at Department of Civil and Transport Engineering cover topics in coastal, harbour, marine and arctic engineering.

National cooperation
Within the university we have cooperation with other departments at our faculty, with other faculties, and with the research organization SINTEF, which have a close cooperation with NTNU. An example of the broad cooperation is illustrated by the NTNU Strategic University Programme on Strategic Wind Power Programme 2003 – 2007. Here seven departments at NTNU are involved and three external national research organizations: Institute for Energy Technology, SINTEF Energy Research, and SINTEF Applied Mathematics.

SINTEF Coastal and Port Laboratory is an important partner on the laboratory side, providing access to and use of advanced and large-scale facilities for coastal and harbour experimental work. Staff is also acting as advisors on project and thesis work.

Broad and extensive cooperation has been established with the industry and public authorities. Our main collaborating partners are: Statoil, Norsk Hydro, Norwegian Petroleum Directorate, Research Council of Norway, Barlindhaug Consult, Dr.techn Olav Olsen, Norwegian Coastal Administration, and Avinor, in addition to a large number of smaller and medium-sized companies.

European cooperation
We have regularly exchange students coming from many parts of Europe, with Germany, France and Spain as the main countries. We host visits of researchers for short and longer periods of time (3 months to 1 year). Recently we have had researchers form France, Italy, Great Britain and Russia.

Through the NFR Eastern European Programme, a strong increase in cooperation with Eastern Europe, and in particular Russia has been developed. Major partners in Russia are St. Petersburg State Technical University, and Russian State University of Oil and Gas. The main activities are related to Arctic Offshore Engineering, and the cooperation has resulted in 2 books, 4 papers in international journals, 24 conference proceedings and more than 20 reports. Also more than 15 master/doctoral students have stayed in either country a year or more.

Our staff has actively participated in European networks, organizations and committees. Examples of this are position of president in POAC, chairman of PIANC working group, EUCEET Thematic Network, chairman of ISO/Technical Committees, HERCULES etc.

Within Arctic Marine Engineering the two major programmes have been LOLEIF – Validation of low-level ice forces on coastal structures and STRICE – Structures in ice. Another programme has been SCARCOST – Scour around coastal structures.
Other international cooperation
Over a 15-year period, a one-year post-graduate Diploma course was run with students coming from various developing countries all over the world (35 countries). This has created networks, which in turn have led to research cooperation with among others: Sri Lanka Ports Authority, and Institute of Marine Sciences, Zanzibar.

Through sabbatical, staff has over the recent years visited institutions as: Texas A&M, MIT, Coastal and Hydraulics Laboratory at Vicksburg, University of Houston/Conoco, University of Florida, The No. 4 Survey and Design Institute for Harbour Engineering, Guangzhou. We have hosted researchers for a one year period from Japan and China. During the latest five years, our staff has had on an average 20 joint publications with international colleagues.

Doctoral candidates at our Division are very much international. We have now candidates from Iceland, Indonesia, France, the Netherlands and Russia, and have had candidates from India, China, Turkey and Tanzania.

Universities we have developed good cooperation with include among others:
- St. Petersburg State Technical University, Russia
- Texas A&M University, USA
- University of Florida, USA
- University of Dar es Salaam, Institute of Marine Sciences, Tanzania
- University of Moratuwa, Sri Lanka
- Tottori University, Japan
- Hokkaido University, Japan
- Kyoto University, Japan
- Hohai University, Nanjing, China
- Chongqing Jiatong University, China
- Tongji University, Shanghai, China
- Ocean University of Qingdao, China

In Europe we have cooperation and exchange of students with a number of universities.

NTNU has formal collaborating agreements with some 110 universities worldwide.
The Dept. of Hydraulic, Maritime and Environmental Engineering (DEHMA) of UPC -where there is the Maritime Engineering Lab (LIM/UPC)- has a long background in Maritime Engineering student exchanges within the ERASMUS and SOCRATES EU programmes through its participation in teaching activities at the Civil Engineering High School (ETSECCPB/UPC), at both undergraduate and postgraduate levels. During the past 15 years DEHMA/UPC has exchanged students with the main European Union universities teaching Civil Engineering. Special mention should be made to the considerable number of undergraduate European students that developed their Master Thesis at the Maritime Engineering Lab of DEHMA/UPC within the field of Maritime and Coastal Engineering. The ETSECCPB/UPC also participates in several programmes of civil engineering student exchange with Latin America and East and Central Europe universities. Other programmes for students mobility includes the EU TEMPUS programme and agreements with USA, Canada, Japan and Switzerland. ETSECCPB/UPC is an academic partner of the UNITECH network which offers an intensive, full year abroad exchange, to students who wish to complement their engineering studies, with international academic and industry exposure, joint courses and insights in management theory and practise. UPC is also member of the CLUSTER ( Consortium Linking Universities of Science and Technology for Education and Research), CESAEER ( Conference of European Schools for Advanced Engineering Education and Research), CINDA ( Centro Interuniversitario de Desarrollo) and TIME ( Top Industrial Manager for Europe) networks. UPC participates also in the ALFA, Intercampus and UPC/Latin America cooperation programmes with Latin America.

At a postgraduate level, DEHMA/UPC participates in the PhD in Civil Engineering of the ETSECCPB/UPC (taught in English). More specifically the postgraduate activities of DEHMA/UPC include the coordination of the Interuniversity (UPC/UB/CSIC) PhD Programme on Marine Sciences. Within the framework of this PhD programme DEHMA/UPC has participated in the "Diplome d'Etudes Approfondies Europeen en Modelisation de l'Environment Marin" Socrates/ERASMUS Diploma Eruditionum Altarum DEA europaeum. At Master programmes level, DEHMA/UPC is the coordinator of the Master in Harbour Engineering and Management and the International Master in Coastal Zone Management. Latin American and North African students represent more than half the students registered in both masters and the PhD programme. All these postgraduate programmes (masters and PhD) benefit from academic short stays for lecturing within their courses, such as the Professors Mobility Programme within the Quality Award of the PhD Programme on Marine Sciences, financed by the Spanish Ministry of Education. A specific academic exchange agreement has been signed with the Universidad Autonoma de Baja California within the PhD Programme on Marine Sciences.

Every year, the DEHMA/UPC receives postgraduate students, whose grants are mainly financed by the Spanish Cooperation Agency AECI, the MUTIS programme or the grants programme of Fundació n Carolina.

From a research standpoint DEHMA/UPC participates in several EU FP5 and FP6 research projects which include mobility programmes with other European research
institutions. Some recent examples are the HYDRALAB Network (TMR-researcher mobility) and the MARIE project (Marie Curie).

Some universities with which DEHMA/UPC has academic agreements within the undergraduate/postgraduate SOCRATES ERASMUS programme:
Aalborg Universitetscenter
The University of Liverpool
Technische Universiteit Delft
University College of Cork
Aristotelio Panepistimio Thessalonikis
The Universität Braunschweig
Universiteit Gent
Universitetet i Trondheim
Politecnico di Milano
Universite de Nantes
Université de Toulon et du Var.

DEHMA/UPC also participates in the Diplome d'Etudes Approfondies Europeen en Modelisation de l'Environment Marin" Socrates/ERASMUS Diploma Eruditionum Altarum DEA europaeum together with the following universities:
Universidad de Las Palmas de Gran Canaria
Universitat de les Illes Balears
Université de Liège
Université de Bretagne Occidentale Brest
Université de Corse Pascal Paoli
Université Pierre et Marie Curie Paris VI
Uniservidade Nova de Lisboa
Universidade Tecnica de Lisboa
School of Civil Engineering and the Environment and School of Ocean and Earth Science, University of Southampton

(non-exhaustive and presently active)

EU Socrates MSc student exchanges
- Reception of Socrates students from France
- Sending of Socrates students to Université de Bordeaux

EU MSc students:
- Formal enrolment into both BSc and MSc program of students from Greece, Spain, the Netherlands, Italy, Germany, Ireland

Non-EU MSc students
- Formal enrolment into both BSc and MSc program of students from China, the Maldives, Mexico, Cameroon, Nigeria

EU PhD students:
- Full or partial guidance of PhD students from the Netherlands, Germany, Italy, Spain, Holland, France, Belgium

Non-EU PhD students:
- Full guidance of PhD students from USA, Mexico, Brazil

EU FP6:
- Environment programme: EUROSTRATAFORM, EURODELTA, BIOFLOW, EUMARSAND
- Interreg programme: Branch

International formal research collaboration:
- Delft Hydraulics / Netherlands
- IST Lisbon/Portugal, Mechanical Engineering Department
- TU Braunschweig, Germany
- China: Yangze River Commission, including the estuary and delta
- GKSS (Germany) Memorandum of Understanding on Coastal Research
- UNESCO (CEISM) committee on coastal management in Mediterranean
- SCOR committee 122 (Erosion of Muddy coasts)
- APN network on Asian Megadeltas
- USA: Field Research Facility of US Army Corps of Engineers

History of collaboration with partners:
- UPC: more than 10 years of joint research projects and staff exchanges;
- Delft: more than 15 years of joint research projects and exchanges with Prof M. Stive
- Trondheim: frequent research contacts over 20 years, use of facilities at NTNU and Marintek, joint publications in 2003 and 2005.
- City, London: close links following staff relocation from City in 1999.
School of Engineering and Mathematical Sciences, City University

Introduction.
The School of Engineering and Mathematical Sciences, City University has an extensive international network of academic, industrial and commercial links. The links exist at all levels to the benefit of undergraduate students and academic staff alike. They enhance the quality of the educational programmes and the research activities. London is an international business and commercial centre and remains the global centre for marine activities. City University plays an important role in supporting theses activities.

National cooperation.
There is extensive collaboration with other UK universities within many EPSRC and ESRC funded programmes. For instance, the application of optical fibres, which can be used for monitoring the performance of marine structures, involves the universities of Kent and Cranfield. Collaborative research in the area of marine geotechnics includes Imperial College, University of London, and Oxford and Cambridge universities. Research in the area of the fatigue of marine structures is being conducted with the Marine Technology Centre, University College, and University of London. Computational fluid mechanics and fluid loading studies in the marine environment are being undertaken with the University of Southampton. There are many other examples of inter university collaboration.

Broad and extensive cooperation has been established with UK industry and public bodies. Research into the behaviour of Jack Up Platforms is being carried out with British Maritime Technology and the consultants, Noble Denton. Other UK collaborative partners include, Lloyds Register, British Petroleum, Holroyd, the Building Research Institute and the Steel Construction Institute.

The School of Engineering has very strong links with the University Business School and directly into the marine profession through associations with the Honourable Company of Master Mariners.

European Cooperation.
The School of Engineering is very active in participating in the Erasmus Socrates Mobility Schemes. Students and staff from almost all EU countries spend study periods in London, which last from 3 to 12 months. There are formal staff exchanges with the Technical University of Denmark, University of Karlsruhe, Germany, Helsinki Technical University and the Technical University of Prague. Formal links have also been established with St Petersberg State Technical University and the Politechnic University of Milan for joint degree programmes.

The academic staffs are active in thematic networks and particularly in the EUCEET civil engineering programme. They chair Euro committees, and are involved many Framework 6 research programmes such as CRAFT. These latter activities involve the participation of European companies such as the Norwegian Public Works Authority and the Swedish Optical Research Institute.

Other European organisations, which have been involved in cooperative programmes, include Delft University of Technology, the Norwegian Petroleum Directorate, the Technical University of Madrid and ENPC Paris, for example.
Other International cooperation.
The School of Engineering and Mathematical Sciences has extensive world wide collaborative programmes with both academic and industrial organisations. There are links with Osaka University, Asian Institute of Technology, Thailand, University of Technology, Malaysia, University of Singapore, Texas A and M, the University of California, Monash University, Australia, Inchon University Korea and Dalian Maritime University, China, for example. Examples of international industrial links include, Toyota, Yamaha, BMW, Castrol, Exxon, Marathon Le Tourneau.
Orientation Week
for new International Students

15 - 21 August 2005

Preliminary Programme

www.ntnu.no/intersek/
## Monday 15 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.15</td>
<td>Steinan Student Village</td>
<td><strong>All international students:</strong>&lt;br&gt;Bus to NTNU Gløshaugen Campus</td>
</tr>
<tr>
<td>9.30</td>
<td>Moholt Student Village, (Reception)</td>
<td><strong>All international students:</strong>&lt;br&gt;Bus to NTNU Gløshaugen Campus</td>
</tr>
<tr>
<td>10.00</td>
<td>R2 Realfagbygget Gløshaugen Campus</td>
<td><strong>All international students:</strong>&lt;br&gt;<strong>Welcome meeting</strong>&lt;br&gt;Welcome, Head of Office of International Relations&lt;br&gt;Welcome, Rector&lt;br&gt;Presentation of NTNU, Professor Arne M. Bredesen&lt;br&gt;Break</td>
</tr>
<tr>
<td>11.00</td>
<td>R2</td>
<td><strong>Norway from an international student's perspective</strong>&lt;br&gt;Presentation by 3 students</td>
</tr>
<tr>
<td>11.30</td>
<td>R2</td>
<td><strong>An introduction to Norwegian cultural peculiarities</strong>, Stewart Clark, Adviser NTNU and Wolfgang Laschet, Socrates Programme Coordinator</td>
</tr>
<tr>
<td>12.00</td>
<td>Outside R2</td>
<td><strong>Registration for the Orientation week</strong>&lt;br&gt;Registration for boat trip 20 August: NOK 100&lt;br&gt;NB. Limited number of seats available. First come, first served.</td>
</tr>
<tr>
<td>12.30</td>
<td>Tellus Realfag Cafeteria, Realfagsbygget Gløshaugen campus</td>
<td><strong>All international students:</strong>&lt;br&gt;Complimentary lunch</td>
</tr>
<tr>
<td>13.30</td>
<td>Gløshaugen Campus</td>
<td><strong>All international students:</strong></td>
</tr>
</tbody>
</table>
(Outside Tellus after lunch)  
Campus walk  
Guided tour of the Gløshaugen campus

### Monday 15 August

#### Evening Programme

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.00</td>
<td>Campo Kjelhuset Cafeteria,</td>
<td><strong>All international students:</strong></td>
</tr>
<tr>
<td></td>
<td>Gløshaugen campus</td>
<td><strong>Welcome party</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Students’ Welfare Organization (SiT) and The Office of International Relations invite you to an informal welcome party</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Live music, barbecue</td>
</tr>
</tbody>
</table>

### Tuesday 16 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>Moholt Student Village (Reception)</td>
<td><strong>MSc/MPhil Norad fellows</strong></td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td>Bus to Aliens Office</td>
</tr>
<tr>
<td>8.30</td>
<td>Aliens Office (Police station) and</td>
<td>Registration at the Aliens Office and the National Population Register</td>
</tr>
<tr>
<td></td>
<td>National Populations Register</td>
<td><em>Remember to bring your passport</em></td>
</tr>
<tr>
<td>8.30</td>
<td>Moholt Student Village (Reception)</td>
<td><strong>MSc/MPhil Quota Programme students /MSc/MPhil students with other funding:</strong></td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td>Bus to Gløshaugen campus</td>
</tr>
<tr>
<td>9.00-12.00</td>
<td>EL 2 Elektrobygget, Gløshaugen campus</td>
<td><strong>MSc/MPhil Quota Programme students /MSc/MPhil students with other funding:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meet Ragnhild Brakstad, Quota Programme coordinator</td>
</tr>
<tr>
<td>10.00-12.00</td>
<td>Styrerommet, Main Building Gløshaugen campus</td>
<td><strong>MSc/MPhil Norad fellows:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meet Rita Kumar, Norad Programme coordinator</td>
</tr>
<tr>
<td>Time</td>
<td>Location</td>
<td>Activity</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>10.30</td>
<td>Moholt Student village</td>
<td>Exchange students:</td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td>Bus to Dragvoll campus</td>
</tr>
<tr>
<td>10.15</td>
<td>Steinan Student village</td>
<td>Exchange students:</td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td>Bus to Dragvoll campus</td>
</tr>
<tr>
<td>11.00</td>
<td>Dragvoll campus</td>
<td>Exchange students:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meet programme coordinators</td>
</tr>
<tr>
<td>12.30-13.30</td>
<td>Dragvoll campus</td>
<td>Exchange students:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lunch</td>
</tr>
<tr>
<td>14.00</td>
<td>Dragvoll campus</td>
<td>Exchange students:</td>
</tr>
<tr>
<td></td>
<td>Outside main entrance</td>
<td>Bus to Ringve Museum</td>
</tr>
<tr>
<td>12.00</td>
<td>Stairs at the main entrance, outside Main Building, Gløshaugen campus</td>
<td>International Master’s Programme students:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group photo of all Master’s Programme students and course coordinators</td>
</tr>
<tr>
<td>12.30-13.30</td>
<td>Campo Kjelhuset cafeteria, Gløshaugen campus</td>
<td>International Master’s Programme students, IFUS students &amp; PhD students:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complimentary lunch</td>
</tr>
<tr>
<td>14.00</td>
<td>Outside Main Building, Gløshaugen campus</td>
<td>International Master’s Programme students, IFUS students &amp; PhD students (except MSc/MPhil Norad fellows):</td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td>Bus to Ringve Museum</td>
</tr>
<tr>
<td>14.30</td>
<td>Ringve Museum</td>
<td>Guided tour of the Ringve Museum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norway’s national museum of music and musical instruments, with collections from around the world</td>
</tr>
<tr>
<td>16.00</td>
<td>Ringve Museum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus departure back to Moholt / Steinan student villages</td>
<td></td>
</tr>
<tr>
<td>13.45-16.00</td>
<td>Styrerommet, Main building, Gløshaugen</td>
<td>MSc/MPhil Norad fellows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information meeting</td>
</tr>
</tbody>
</table>
Tuesday 16 August
Evening programme

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00</td>
<td>Moholt Student village</td>
<td>International Master’s Programme students ONLY;</td>
</tr>
<tr>
<td></td>
<td>(Reception)</td>
<td>MSc in Petroleum Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSc in Petroleum Geosciences</td>
</tr>
<tr>
<td></td>
<td>Guided walk to the</td>
<td>MSc in Marine Technology</td>
</tr>
<tr>
<td></td>
<td>Marine Technology Centre,</td>
<td>MSc in Hydropower Development</td>
</tr>
<tr>
<td></td>
<td>Tyholt</td>
<td>MSc in Geotechnics and Geohazards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSc in Coastal and Marine Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSc in Light Metal Production</td>
</tr>
<tr>
<td>19.00</td>
<td>Campo Tyholt Cafeteria,</td>
<td>Welcome dinner</td>
</tr>
<tr>
<td></td>
<td>Marine Technology Centre,</td>
<td>Course coordinators are also invited</td>
</tr>
<tr>
<td></td>
<td>next to the Tyholt Tower</td>
<td></td>
</tr>
<tr>
<td>19.30</td>
<td>Moholt Student village</td>
<td>Erasmus Student Union invites you to a welcome party/gathering</td>
</tr>
<tr>
<td></td>
<td>(Reception)</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday 17 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.45</td>
<td>Moholt Student Village</td>
<td>MSc/MPhil Quota Programme students with other funding: Bus to Aliens Office</td>
</tr>
<tr>
<td>Time</td>
<td>Location</td>
<td>Event</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>8.00</td>
<td>Aliens Office (Police Station) and National Population Register</td>
<td>Registration at the Aliens Office and the National Population Register. Remember to bring your passport</td>
</tr>
<tr>
<td>8.30</td>
<td>Moholt Student Village</td>
<td><strong>MSc/MPhil Norad fellows</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus departure</td>
</tr>
<tr>
<td>9.00</td>
<td>Styrerommet, Main Building, Gløshaugen Campus</td>
<td><strong>MSc/MPhil Norad fellows</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information meeting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norad Programme coordinator</td>
</tr>
<tr>
<td>10.15</td>
<td>Outside Main Building, Gløshaugen campus</td>
<td><strong>MSc/MPhil Norad fellows</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus to Ringve Museum</td>
</tr>
<tr>
<td>10.45</td>
<td></td>
<td><strong>Guided tour of the Ringve Museum</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norway’s national museum of music and musical instruments, with collections from around the world</td>
</tr>
<tr>
<td>12.00</td>
<td>Ringve Museum</td>
<td>Bus departure back to Gløshaugen campus</td>
</tr>
<tr>
<td>9.45</td>
<td>Steinan Student Village</td>
<td><strong>Exchange students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus to city centre</td>
</tr>
<tr>
<td>10.00</td>
<td>Moholt Student Village</td>
<td><strong>Exchange students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus to city centre</td>
</tr>
<tr>
<td>10.30-12.00</td>
<td>City centre: Outside Trondheim Tourist Office</td>
<td><strong>Exchange students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guided City Walk</td>
</tr>
<tr>
<td>12.00</td>
<td></td>
<td><strong>Exchange students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walk back to Gløshaugen Campus</td>
</tr>
<tr>
<td>12.30</td>
<td>Tellus Realfag Cafeteria, Realfagbygget</td>
<td><strong>All international students:</strong></td>
</tr>
<tr>
<td></td>
<td>Gløshaugen campus</td>
<td>Complimentary lunch</td>
</tr>
</tbody>
</table>
13.30-15.00 MSc/MPhil Norad fellows
Information meeting
Norad Programme Coordinator

13.30-15.00 MSc/MPhil Quota Programme students
/MSc/MPhil students with other funding:
Information meeting
Quota Programme coordinator

14.00 Gløshaugen Campus
Exchange students:
Information meeting
Cultural exchange

15.15-17.00 Gløshaugen Campus
International Master’s Programme students:
Information meeting
"It's easy when you know how"
The art of living comfortably in Norway

Thursday 18 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 10.00  | Moholt Student village
(Reception) | All international students: Bus to Gløshaugen campus                                                                                     |
| 10.00  | Steinan Student village
(Reception) | All international students: Bus to Gløshaugen campus                                                                                     |
| 11.00  | Gløshaugen campus   | Matriculation ceremony                                                                                                                                 |
|        |                     | Welcome speeches by NTNU’s Rector and the Mayor of Trondheim                                                                                   |

After the matriculation ceremony

<table>
<thead>
<tr>
<th></th>
<th>International Master’s Programme students following courses at Gløshaugen</th>
<th>Separate programmes will be held at the respective faculties shortly after the matriculation ceremony:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NOTE: The separate programmes held at the faculties will be for the international master’s programme students ONLY</td>
</tr>
</tbody>
</table>

After the matriculation ceremony

<table>
<thead>
<tr>
<th>Dragvoll campus</th>
<th>International Master’s Programme students &amp; exchange students following courses at Dragvoll:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bus to Dragvoll</td>
</tr>
</tbody>
</table>
International Master’s Programme students:
Meet course coordinators

Exchange students:
meet for the Buddy Programme for all new students at Dragvoll outside Dragvoll Sport’s centre.

The Buddy Programme will have a separate international stand.

14.30

**International Master’s Programme students following courses at Dragvoll campus**

Separate programmes will be held at the respective faculties shortly after the matriculation ceremony:

NOTE: The separate programmes held at the faculties will be for the international master’s programme students **ONLY**

12.00 Garden International House
Gloshaugen Campus

**Exchange students following courses at Gloshaugen, IFUS students & PhD students:**
Outdoor ‘Norwegian style’ barbeque
Regardless of weather conditions
Dress for the occasion

15.00 R7
Realfagbygget, Gloshaugen campus

**International Master’s Programme students & exchange students following courses at Gloshaugen**
Getting to know the academic student organizations at NTNU

Meeting the Norwegian students following the same courses as you

Party with the Norwegian students

20.00 Matriculation Party for all new NTNU students
at the Student Society (Samfundet)
### Friday 19 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.15</td>
<td>Moholt Student Village (Reception)</td>
<td><strong>All international students</strong></td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To Dragvoll Sport’s Centre</td>
<td></td>
</tr>
<tr>
<td>9.15</td>
<td>Steinan Student Village</td>
<td><strong>All international students</strong></td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to Dragvoll Sport’s Centre</td>
<td></td>
</tr>
<tr>
<td>9.30</td>
<td>Dragvoll Sport’s Centre</td>
<td><strong>All international students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information about sports facilities,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By Sports Consultant Arne Brevik.</td>
</tr>
<tr>
<td>10.30</td>
<td>Dragvoll campus</td>
<td>Lecture :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;Economic Background to Modern Norway&quot;,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Jonathan Moses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dept. of Sociology and Political Science</td>
</tr>
<tr>
<td>12.30</td>
<td>Dragvoll campus</td>
<td><strong>Complimentary lunch</strong></td>
</tr>
<tr>
<td>13.30</td>
<td>Dragvoll campus</td>
<td><strong>All international students:</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Students’ Welfare Organization (SiT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Student Parliament</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- International Student Union (ISU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Erasmus Student Network (ESN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- International Club of Trondheim (ICOT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The International Student Festival in Trondheim, ISFIT 2006</td>
</tr>
</tbody>
</table>
### Saturday 20 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>Steinan Student Village</td>
<td><strong>Only for international students who have registered for the boat trip on the Trondheim fjord:</strong>&lt;br&gt;Bus departure&lt;br&gt;Remember to bring your ticket and a rain/wind jacket if it is cool or rainy.</td>
</tr>
<tr>
<td></td>
<td>(Vestlia final stop)</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>Moholt Student Village</td>
<td><strong>Only for international students who have registered for the boat trip on the Trondheim fjord:</strong>&lt;br&gt;Bus departure&lt;br&gt;Remember to bring your ticket and a rain/wind jacket if it is cool or rainy.</td>
</tr>
<tr>
<td></td>
<td>(Reception)</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>Pirterminalen</td>
<td>Boat trip on the Trondheim fjord</td>
</tr>
<tr>
<td>13.30</td>
<td></td>
<td><strong>Visit to Uthaug, a former fishing village</strong>&lt;br&gt;Guided tour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outdoor lunch</td>
</tr>
<tr>
<td>17.00</td>
<td>Pirterminalen</td>
<td><strong>Bus back to Moholt Student Village and Steinan Student Village</strong></td>
</tr>
<tr>
<td></td>
<td>Arrival Trondheim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus departure</td>
<td></td>
</tr>
</tbody>
</table>
## Sunday 21 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Meeting place</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.45</td>
<td>Steinan Student Village&lt;br&gt;(Vestlia Final Stop)</td>
<td>All international students: Guided tour of Trondheim</td>
</tr>
<tr>
<td>11.00</td>
<td>Moholt Student Village&lt;br&gt;(Reception)</td>
<td>Bus departure</td>
</tr>
<tr>
<td>12.30</td>
<td></td>
<td>Guided tour of Trøndelag Folk Museum, Sverresborg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Trøndelag Folk Museum is an open-air museum with more than 60 buildings from central Norway (the Trøndelag district). The museum is in a scenic natural setting, and from the ruins of King Sverre's medieval castle you get an impressive view of the city and the fjord.</td>
</tr>
<tr>
<td>15.00</td>
<td>Bus back to Moholt/Steinan student villages</td>
<td>Bring your own lunch</td>
</tr>
</tbody>
</table>